Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
import signal
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
|
|
|
6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
7 |
from textwrap import dedent
|
8 |
|
@@ -10,25 +12,34 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
10 |
|
11 |
def generate_importance_matrix(model_path, train_data_path):
|
12 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
|
|
13 |
os.chdir("llama.cpp")
|
14 |
-
|
|
|
|
|
|
|
15 |
if not os.path.isfile(f"../{model_path}"):
|
16 |
raise Exception(f"Model file not found: {model_path}")
|
17 |
-
|
|
|
18 |
process = subprocess.Popen(imatrix_command, shell=True)
|
19 |
-
|
20 |
try:
|
21 |
-
process.wait(timeout=60)
|
22 |
except subprocess.TimeoutExpired:
|
|
|
23 |
process.send_signal(signal.SIGINT)
|
24 |
try:
|
25 |
-
process.wait(timeout=5)
|
26 |
except subprocess.TimeoutExpired:
|
|
|
27 |
process.kill()
|
28 |
-
|
29 |
os.chdir("..")
|
30 |
|
31 |
-
|
|
|
|
|
32 |
if oauth_token.token is None:
|
33 |
raise ValueError("You have to be logged in.")
|
34 |
|
@@ -37,16 +48,23 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
37 |
split_cmd += f" --split-max-size {split_max_size}"
|
38 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
39 |
|
|
|
|
|
40 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
|
|
|
|
41 |
|
42 |
if result.returncode != 0:
|
43 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
44 |
-
|
|
|
45 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
46 |
if sharded_model_files:
|
|
|
47 |
api = HfApi(token=oauth_token.token)
|
48 |
for file in sharded_model_files:
|
49 |
file_path = os.path.join('.', file)
|
|
|
50 |
try:
|
51 |
api.upload_file(
|
52 |
path_or_fileobj=file_path,
|
@@ -57,11 +75,12 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
57 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
58 |
else:
|
59 |
raise Exception("No sharded files found.")
|
|
|
|
|
60 |
|
61 |
-
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
62 |
if oauth_token.token is None:
|
63 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
64 |
-
|
65 |
model_name = model_id.split('/')[-1]
|
66 |
fp16 = f"{model_name}.fp16.gguf"
|
67 |
|
@@ -70,39 +89,69 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
70 |
|
71 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
72 |
model_types = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel"]
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
|
|
|
|
|
|
75 |
|
76 |
conversion_script = "convert_hf_to_gguf.py"
|
77 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
78 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
79 |
-
|
80 |
if result.returncode != 0:
|
81 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
|
|
|
|
82 |
|
83 |
imatrix_path = "llama.cpp/imatrix.dat"
|
84 |
|
85 |
if use_imatrix:
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
if not os.path.isfile(train_data_path):
|
88 |
raise Exception(f"Training data file not found: {train_data_path}")
|
89 |
-
generate_importance_matrix(fp16, train_data_path)
|
90 |
|
|
|
|
|
|
|
91 |
username = whoami(oauth_token.token)["name"]
|
92 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
93 |
quantized_gguf_path = quantized_gguf_name
|
94 |
-
|
95 |
if use_imatrix:
|
96 |
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
97 |
else:
|
98 |
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
99 |
-
|
100 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
101 |
if result.returncode != 0:
|
102 |
raise Exception(f"Error quantizing: {result.stderr}")
|
|
|
|
|
103 |
|
|
|
104 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
105 |
new_repo_id = new_repo_url.repo_id
|
|
|
106 |
|
107 |
try:
|
108 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
@@ -118,60 +167,102 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
118 |
# {new_repo_id}
|
119 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
120 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
121 |
-
|
122 |
## Use with llama.cpp
|
123 |
Install llama.cpp through brew (works on Mac and Linux)
|
|
|
124 |
```bash
|
125 |
-
brew install
|
|
|
126 |
```
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
```bash
|
131 |
-
|
132 |
```
|
133 |
-
|
|
|
134 |
```bash
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
```
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
-
card.save(new_repo_id, token=oauth_token.token)
|
140 |
-
|
141 |
if split_model:
|
142 |
-
split_upload_model(
|
143 |
else:
|
144 |
api.upload_file(
|
145 |
-
path_or_fileobj=
|
146 |
path_in_repo=quantized_gguf_name,
|
147 |
repo_id=new_repo_id,
|
148 |
-
token=oauth_token.token,
|
149 |
)
|
150 |
-
|
151 |
-
|
152 |
-
return f"
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
return scheduler
|
158 |
|
159 |
with gr.Blocks() as demo:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import shutil
|
3 |
import subprocess
|
4 |
import signal
|
5 |
import gradio as gr
|
6 |
from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
|
7 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
from textwrap import dedent
|
10 |
|
|
|
12 |
|
13 |
def generate_importance_matrix(model_path, train_data_path):
|
14 |
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
15 |
+
|
16 |
os.chdir("llama.cpp")
|
17 |
+
|
18 |
+
print(f"Current working directory: {os.getcwd()}")
|
19 |
+
print(f"Files in the current directory: {os.listdir('.')}")
|
20 |
+
|
21 |
if not os.path.isfile(f"../{model_path}"):
|
22 |
raise Exception(f"Model file not found: {model_path}")
|
23 |
+
|
24 |
+
print("Running imatrix command...")
|
25 |
process = subprocess.Popen(imatrix_command, shell=True)
|
26 |
+
|
27 |
try:
|
28 |
+
process.wait(timeout=60) # added wait
|
29 |
except subprocess.TimeoutExpired:
|
30 |
+
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
31 |
process.send_signal(signal.SIGINT)
|
32 |
try:
|
33 |
+
process.wait(timeout=5) # grace period
|
34 |
except subprocess.TimeoutExpired:
|
35 |
+
print("Imatrix proc still didn't term. Forecfully terming process...")
|
36 |
process.kill()
|
37 |
+
|
38 |
os.chdir("..")
|
39 |
|
40 |
+
print("Importance matrix generation completed.")
|
41 |
+
|
42 |
+
def split_upload_model(model_path, repo_id, oauth_token: gr.oauth.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
43 |
if oauth_token.token is None:
|
44 |
raise ValueError("You have to be logged in.")
|
45 |
|
|
|
48 |
split_cmd += f" --split-max-size {split_max_size}"
|
49 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
50 |
|
51 |
+
print(f"Split command: {split_cmd}")
|
52 |
+
|
53 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
54 |
+
print(f"Split command stdout: {result.stdout}")
|
55 |
+
print(f"Split command stderr: {result.stderr}")
|
56 |
|
57 |
if result.returncode != 0:
|
58 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
59 |
+
print("Model split successfully!")
|
60 |
+
|
61 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
62 |
if sharded_model_files:
|
63 |
+
print(f"Sharded model files: {sharded_model_files}")
|
64 |
api = HfApi(token=oauth_token.token)
|
65 |
for file in sharded_model_files:
|
66 |
file_path = os.path.join('.', file)
|
67 |
+
print(f"Uploading file: {file_path}")
|
68 |
try:
|
69 |
api.upload_file(
|
70 |
path_or_fileobj=file_path,
|
|
|
75 |
raise Exception(f"Error uploading file {file_path}: {e}")
|
76 |
else:
|
77 |
raise Exception("No sharded files found.")
|
78 |
+
|
79 |
+
print("Sharded model has been uploaded successfully!")
|
80 |
|
81 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.oauth.OAuthToken | None):
|
82 |
if oauth_token.token is None:
|
83 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
|
|
84 |
model_name = model_id.split('/')[-1]
|
85 |
fp16 = f"{model_name}.fp16.gguf"
|
86 |
|
|
|
89 |
|
90 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
91 |
model_types = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel"]
|
92 |
+
|
93 |
+
pattern = (
|
94 |
+
"*.safetensors"
|
95 |
+
if any(
|
96 |
+
file.path.endswith(".safetensors")
|
97 |
+
for file in api.list_repo_tree(
|
98 |
+
repo_id=model_id,
|
99 |
+
recursive=True,
|
100 |
+
)
|
101 |
+
)
|
102 |
+
else "*.bin"
|
103 |
+
)
|
104 |
+
|
105 |
+
dl_pattern += pattern
|
106 |
+
dl_pattern += model_types
|
107 |
+
|
108 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
109 |
+
print("Model downloaded successfully!")
|
110 |
+
print(f"Current working directory: {os.getcwd()}")
|
111 |
+
print(f"Model directory contents: {os.listdir(model_name)}")
|
112 |
|
113 |
conversion_script = "convert_hf_to_gguf.py"
|
114 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
115 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
116 |
+
print(result)
|
117 |
if result.returncode != 0:
|
118 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
119 |
+
print("Model converted to fp16 successfully!")
|
120 |
+
print(f"Converted model path: {fp16}")
|
121 |
|
122 |
imatrix_path = "llama.cpp/imatrix.dat"
|
123 |
|
124 |
if use_imatrix:
|
125 |
+
if train_data_file:
|
126 |
+
train_data_path = train_data_file.name
|
127 |
+
else:
|
128 |
+
train_data_path = "groups_merged.txt" #fallback calibration dataset
|
129 |
+
|
130 |
+
print(f"Training data file path: {train_data_path}")
|
131 |
+
|
132 |
if not os.path.isfile(train_data_path):
|
133 |
raise Exception(f"Training data file not found: {train_data_path}")
|
|
|
134 |
|
135 |
+
generate_importance_matrix(fp16, train_data_path)
|
136 |
+
else:
|
137 |
+
print("Not using imatrix quantization.")
|
138 |
username = whoami(oauth_token.token)["name"]
|
139 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
140 |
quantized_gguf_path = quantized_gguf_name
|
|
|
141 |
if use_imatrix:
|
142 |
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
143 |
else:
|
144 |
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
|
|
145 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
146 |
if result.returncode != 0:
|
147 |
raise Exception(f"Error quantizing: {result.stderr}")
|
148 |
+
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
149 |
+
print(f"Quantized model path: {quantized_gguf_path}")
|
150 |
|
151 |
+
# Create empty repo
|
152 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
153 |
new_repo_id = new_repo_url.repo_id
|
154 |
+
print("Repo created successfully!", new_repo_url)
|
155 |
|
156 |
try:
|
157 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
|
|
167 |
# {new_repo_id}
|
168 |
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
169 |
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
170 |
+
|
171 |
## Use with llama.cpp
|
172 |
Install llama.cpp through brew (works on Mac and Linux)
|
173 |
+
|
174 |
```bash
|
175 |
+
brew install llama.cpp
|
176 |
+
|
177 |
```
|
178 |
+
Invoke the llama.cpp server or the CLI.
|
179 |
+
|
180 |
+
### CLI:
|
181 |
```bash
|
182 |
+
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
183 |
```
|
184 |
+
|
185 |
+
### Server:
|
186 |
```bash
|
187 |
+
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
188 |
+
```
|
189 |
+
|
190 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
191 |
+
Step 1: Clone llama.cpp from GitHub.
|
192 |
+
```
|
193 |
+
git clone https://github.com/ggerganov/llama.cpp
|
194 |
+
```
|
195 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
196 |
+
```
|
197 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
198 |
```
|
199 |
+
Step 3: Run inference through the main binary.
|
200 |
+
```
|
201 |
+
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
202 |
+
```
|
203 |
+
""",
|
204 |
)
|
|
|
|
|
205 |
if split_model:
|
206 |
+
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
207 |
else:
|
208 |
api.upload_file(
|
209 |
+
path_or_fileobj=quantized_gguf_path,
|
210 |
path_in_repo=quantized_gguf_name,
|
211 |
repo_id=new_repo_id,
|
|
|
212 |
)
|
213 |
+
card.push_to_hub(repo_id=new_repo_id, token=oauth_token.token)
|
214 |
+
print("Quantized model uploaded and model card created successfully!")
|
215 |
+
return f"Quantized model uploaded to: {new_repo_url}"
|
216 |
|
217 |
+
except Exception as e:
|
218 |
+
print(f"Error: {str(e)}")
|
219 |
+
raise
|
|
|
220 |
|
221 |
with gr.Blocks() as demo:
|
222 |
+
hf_token_input = gr.Textbox(label="HF Token", type="password", value=HF_TOKEN, visible=False, interactive=False)
|
223 |
+
hf_token = gr.oauth.OAuth(hf_token_input)
|
224 |
+
|
225 |
+
model_id = HuggingfaceHubSearch(label="Select a model from HuggingFace Hub")
|
226 |
+
|
227 |
+
quantization_method = gr.Dropdown(
|
228 |
+
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Select quantization method")
|
229 |
+
imatrix_quantization_method = gr.Dropdown(
|
230 |
+
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Select imatrix quantization method", visible=False)
|
231 |
+
use_imatrix_checkbox = gr.Checkbox(label="Use imatrix")
|
232 |
+
private_repo_checkbox = gr.Checkbox(label="Create a private repo")
|
233 |
+
train_data_upload = gr.File(label="Upload train data for imatrix (optional)", visible=False)
|
234 |
+
split_model_checkbox = gr.Checkbox(label="Split model", visible=False)
|
235 |
+
split_max_tensors = gr.Number(label="Split Max Tensors", visible=False)
|
236 |
+
split_max_size = gr.Number(label="Split Max Size (MB)", visible=False)
|
237 |
+
|
238 |
+
quantized_model_output = gr.Textbox(label="Output")
|
239 |
+
|
240 |
+
use_imatrix_checkbox.change(fn=lambda x: [
|
241 |
+
imatrix_quantization_method.update(visible=x),
|
242 |
+
train_data_upload.update(visible=x),
|
243 |
+
split_model_checkbox.update(visible=x),
|
244 |
+
split_max_tensors.update(visible=x),
|
245 |
+
split_max_size.update(visible=x)
|
246 |
+
], inputs=use_imatrix_checkbox, outputs=[imatrix_quantization_method, train_data_upload, split_model_checkbox, split_max_tensors, split_max_size])
|
247 |
+
|
248 |
+
process_button = gr.Button(label="Quantize and Upload")
|
249 |
+
|
250 |
+
process_button.click(
|
251 |
+
process_model,
|
252 |
+
inputs=[
|
253 |
+
model_id,
|
254 |
+
quantization_method,
|
255 |
+
use_imatrix_checkbox,
|
256 |
+
imatrix_quantization_method,
|
257 |
+
private_repo_checkbox,
|
258 |
+
train_data_upload,
|
259 |
+
split_model_checkbox,
|
260 |
+
split_max_tensors,
|
261 |
+
split_max_size,
|
262 |
+
hf_token
|
263 |
+
],
|
264 |
+
outputs=[quantized_model_output],
|
265 |
+
)
|
266 |
+
|
267 |
+
if __name__ == "__main__":
|
268 |
+
demo.launch()
|