Ffftdtd5dtft commited on
Commit
d6c19ae
·
verified ·
1 Parent(s): a34ae2a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -55
app.py CHANGED
@@ -1,8 +1,10 @@
1
  import os
 
2
  import subprocess
3
  import signal
4
  import gradio as gr
5
  from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
 
6
  from apscheduler.schedulers.background import BackgroundScheduler
7
  from textwrap import dedent
8
 
@@ -10,25 +12,34 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
10
 
11
  def generate_importance_matrix(model_path, train_data_path):
12
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
 
13
  os.chdir("llama.cpp")
14
-
 
 
 
15
  if not os.path.isfile(f"../{model_path}"):
16
  raise Exception(f"Model file not found: {model_path}")
17
-
 
18
  process = subprocess.Popen(imatrix_command, shell=True)
19
-
20
  try:
21
- process.wait(timeout=60)
22
  except subprocess.TimeoutExpired:
 
23
  process.send_signal(signal.SIGINT)
24
  try:
25
- process.wait(timeout=5)
26
  except subprocess.TimeoutExpired:
 
27
  process.kill()
28
-
29
  os.chdir("..")
30
 
31
- def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
 
 
32
  if oauth_token.token is None:
33
  raise ValueError("You have to be logged in.")
34
 
@@ -37,16 +48,23 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
37
  split_cmd += f" --split-max-size {split_max_size}"
38
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
39
 
 
 
40
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
 
 
41
 
42
  if result.returncode != 0:
43
  raise Exception(f"Error splitting the model: {result.stderr}")
44
-
 
45
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
46
  if sharded_model_files:
 
47
  api = HfApi(token=oauth_token.token)
48
  for file in sharded_model_files:
49
  file_path = os.path.join('.', file)
 
50
  try:
51
  api.upload_file(
52
  path_or_fileobj=file_path,
@@ -57,11 +75,12 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
57
  raise Exception(f"Error uploading file {file_path}: {e}")
58
  else:
59
  raise Exception("No sharded files found.")
 
 
60
 
61
- def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
62
  if oauth_token.token is None:
63
  raise ValueError("You must be logged in to use GGUF-my-repo")
64
-
65
  model_name = model_id.split('/')[-1]
66
  fp16 = f"{model_name}.fp16.gguf"
67
 
@@ -70,39 +89,69 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
70
 
71
  dl_pattern = ["*.md", "*.json", "*.model"]
72
  model_types = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel"]
73
- dl_pattern.extend(model_types)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
 
 
 
75
 
76
  conversion_script = "convert_hf_to_gguf.py"
77
  fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
78
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
79
-
80
  if result.returncode != 0:
81
  raise Exception(f"Error converting to fp16: {result.stderr}")
 
 
82
 
83
  imatrix_path = "llama.cpp/imatrix.dat"
84
 
85
  if use_imatrix:
86
- train_data_path = train_data_file.name if train_data_file else "groups_merged.txt"
 
 
 
 
 
 
87
  if not os.path.isfile(train_data_path):
88
  raise Exception(f"Training data file not found: {train_data_path}")
89
- generate_importance_matrix(fp16, train_data_path)
90
 
 
 
 
91
  username = whoami(oauth_token.token)["name"]
92
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
93
  quantized_gguf_path = quantized_gguf_name
94
-
95
  if use_imatrix:
96
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
97
  else:
98
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
99
-
100
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
101
  if result.returncode != 0:
102
  raise Exception(f"Error quantizing: {result.stderr}")
 
 
103
 
 
104
  new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
105
  new_repo_id = new_repo_url.repo_id
 
106
 
107
  try:
108
  card = ModelCard.load(model_id, token=oauth_token.token)
@@ -118,60 +167,102 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
118
  # {new_repo_id}
119
  This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
120
  Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
121
-
122
  ## Use with llama.cpp
123
  Install llama.cpp through brew (works on Mac and Linux)
 
124
  ```bash
125
- brew install gguf
 
126
  ```
127
-
128
- ## Use llama.cpp quantized model
129
- - Download the model:
130
  ```bash
131
- curl -L -o {quantized_gguf_name} https://huggingface.co/{new_repo_id}/raw/main/{quantized_gguf_name}
132
  ```
133
-
 
134
  ```bash
135
- ./main -m {quantized_gguf_name} --prompt "Tell me about gguf"
 
 
 
 
 
 
 
 
 
 
136
  ```
137
- """
 
 
 
 
138
  )
139
- card.save(new_repo_id, token=oauth_token.token)
140
-
141
  if split_model:
142
- split_upload_model(quantized_gguf_name, new_repo_id, oauth_token, split_max_tensors, split_max_size)
143
  else:
144
  api.upload_file(
145
- path_or_fileobj=quantized_gguf_name,
146
  path_in_repo=quantized_gguf_name,
147
  repo_id=new_repo_id,
148
- token=oauth_token.token,
149
  )
150
- return f"Done processing {new_repo_id}"
151
- except Exception as e:
152
- return f"Error processing model: {str(e)}"
153
 
154
- def setup_scheduler():
155
- scheduler = BackgroundScheduler()
156
- scheduler.start()
157
- return scheduler
158
 
159
  with gr.Blocks() as demo:
160
- model_id = gr.Textbox(label="Enter Model ID", placeholder="Enter model ID from HuggingFace Hub")
161
- q_method = gr.Dropdown(choices=["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Quantization method")
162
- use_imatrix = gr.Checkbox(label="Use imatrix quantization")
163
- imatrix_q_method = gr.Dropdown(choices=["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization method", visible=False)
164
- train_data_file = gr.File(label="Upload calibration dataset for imatrix")
165
- private_repo = gr.Checkbox(label="Make repo private")
166
- split_model = gr.Checkbox(label="Split model before uploading")
167
- split_max_tensors = gr.Slider(minimum=128, maximum=4096, step=128, value=256, label="Max tensors per split")
168
- split_max_size = gr.Number(value=None, label="Max size per split (in MB)")
169
- output = gr.Textbox(label="Output")
170
- oauth_token = gr.OAuth(HF_TOKEN)
171
- process_button = gr.Button(value="Process Model")
172
- process_button.click(process_model, inputs=[model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token], outputs=output)
173
- use_imatrix.change(lambda val: gr.update(visible=val), inputs=use_imatrix, outputs=imatrix_q_method)
174
-
175
- setup_scheduler()
176
-
177
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import shutil
3
  import subprocess
4
  import signal
5
  import gradio as gr
6
  from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
7
+ from gradio_huggingfacehub_search import HuggingfaceHubSearch
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  from textwrap import dedent
10
 
 
12
 
13
  def generate_importance_matrix(model_path, train_data_path):
14
  imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
15
+
16
  os.chdir("llama.cpp")
17
+
18
+ print(f"Current working directory: {os.getcwd()}")
19
+ print(f"Files in the current directory: {os.listdir('.')}")
20
+
21
  if not os.path.isfile(f"../{model_path}"):
22
  raise Exception(f"Model file not found: {model_path}")
23
+
24
+ print("Running imatrix command...")
25
  process = subprocess.Popen(imatrix_command, shell=True)
26
+
27
  try:
28
+ process.wait(timeout=60) # added wait
29
  except subprocess.TimeoutExpired:
30
+ print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
31
  process.send_signal(signal.SIGINT)
32
  try:
33
+ process.wait(timeout=5) # grace period
34
  except subprocess.TimeoutExpired:
35
+ print("Imatrix proc still didn't term. Forecfully terming process...")
36
  process.kill()
37
+
38
  os.chdir("..")
39
 
40
+ print("Importance matrix generation completed.")
41
+
42
+ def split_upload_model(model_path, repo_id, oauth_token: gr.oauth.OAuthToken | None, split_max_tensors=256, split_max_size=None):
43
  if oauth_token.token is None:
44
  raise ValueError("You have to be logged in.")
45
 
 
48
  split_cmd += f" --split-max-size {split_max_size}"
49
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
50
 
51
+ print(f"Split command: {split_cmd}")
52
+
53
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
54
+ print(f"Split command stdout: {result.stdout}")
55
+ print(f"Split command stderr: {result.stderr}")
56
 
57
  if result.returncode != 0:
58
  raise Exception(f"Error splitting the model: {result.stderr}")
59
+ print("Model split successfully!")
60
+
61
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
62
  if sharded_model_files:
63
+ print(f"Sharded model files: {sharded_model_files}")
64
  api = HfApi(token=oauth_token.token)
65
  for file in sharded_model_files:
66
  file_path = os.path.join('.', file)
67
+ print(f"Uploading file: {file_path}")
68
  try:
69
  api.upload_file(
70
  path_or_fileobj=file_path,
 
75
  raise Exception(f"Error uploading file {file_path}: {e}")
76
  else:
77
  raise Exception("No sharded files found.")
78
+
79
+ print("Sharded model has been uploaded successfully!")
80
 
81
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.oauth.OAuthToken | None):
82
  if oauth_token.token is None:
83
  raise ValueError("You must be logged in to use GGUF-my-repo")
 
84
  model_name = model_id.split('/')[-1]
85
  fp16 = f"{model_name}.fp16.gguf"
86
 
 
89
 
90
  dl_pattern = ["*.md", "*.json", "*.model"]
91
  model_types = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel"]
92
+
93
+ pattern = (
94
+ "*.safetensors"
95
+ if any(
96
+ file.path.endswith(".safetensors")
97
+ for file in api.list_repo_tree(
98
+ repo_id=model_id,
99
+ recursive=True,
100
+ )
101
+ )
102
+ else "*.bin"
103
+ )
104
+
105
+ dl_pattern += pattern
106
+ dl_pattern += model_types
107
+
108
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
109
+ print("Model downloaded successfully!")
110
+ print(f"Current working directory: {os.getcwd()}")
111
+ print(f"Model directory contents: {os.listdir(model_name)}")
112
 
113
  conversion_script = "convert_hf_to_gguf.py"
114
  fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
115
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
116
+ print(result)
117
  if result.returncode != 0:
118
  raise Exception(f"Error converting to fp16: {result.stderr}")
119
+ print("Model converted to fp16 successfully!")
120
+ print(f"Converted model path: {fp16}")
121
 
122
  imatrix_path = "llama.cpp/imatrix.dat"
123
 
124
  if use_imatrix:
125
+ if train_data_file:
126
+ train_data_path = train_data_file.name
127
+ else:
128
+ train_data_path = "groups_merged.txt" #fallback calibration dataset
129
+
130
+ print(f"Training data file path: {train_data_path}")
131
+
132
  if not os.path.isfile(train_data_path):
133
  raise Exception(f"Training data file not found: {train_data_path}")
 
134
 
135
+ generate_importance_matrix(fp16, train_data_path)
136
+ else:
137
+ print("Not using imatrix quantization.")
138
  username = whoami(oauth_token.token)["name"]
139
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
140
  quantized_gguf_path = quantized_gguf_name
 
141
  if use_imatrix:
142
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
143
  else:
144
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
 
145
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
146
  if result.returncode != 0:
147
  raise Exception(f"Error quantizing: {result.stderr}")
148
+ print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
149
+ print(f"Quantized model path: {quantized_gguf_path}")
150
 
151
+ # Create empty repo
152
  new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
153
  new_repo_id = new_repo_url.repo_id
154
+ print("Repo created successfully!", new_repo_url)
155
 
156
  try:
157
  card = ModelCard.load(model_id, token=oauth_token.token)
 
167
  # {new_repo_id}
168
  This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
169
  Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
170
+
171
  ## Use with llama.cpp
172
  Install llama.cpp through brew (works on Mac and Linux)
173
+
174
  ```bash
175
+ brew install llama.cpp
176
+
177
  ```
178
+ Invoke the llama.cpp server or the CLI.
179
+
180
+ ### CLI:
181
  ```bash
182
+ llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
183
  ```
184
+
185
+ ### Server:
186
  ```bash
187
+ llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
188
+ ```
189
+
190
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
191
+ Step 1: Clone llama.cpp from GitHub.
192
+ ```
193
+ git clone https://github.com/ggerganov/llama.cpp
194
+ ```
195
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
196
+ ```
197
+ cd llama.cpp && LLAMA_CURL=1 make
198
  ```
199
+ Step 3: Run inference through the main binary.
200
+ ```
201
+ ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
202
+ ```
203
+ """,
204
  )
 
 
205
  if split_model:
206
+ split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
207
  else:
208
  api.upload_file(
209
+ path_or_fileobj=quantized_gguf_path,
210
  path_in_repo=quantized_gguf_name,
211
  repo_id=new_repo_id,
 
212
  )
213
+ card.push_to_hub(repo_id=new_repo_id, token=oauth_token.token)
214
+ print("Quantized model uploaded and model card created successfully!")
215
+ return f"Quantized model uploaded to: {new_repo_url}"
216
 
217
+ except Exception as e:
218
+ print(f"Error: {str(e)}")
219
+ raise
 
220
 
221
  with gr.Blocks() as demo:
222
+ hf_token_input = gr.Textbox(label="HF Token", type="password", value=HF_TOKEN, visible=False, interactive=False)
223
+ hf_token = gr.oauth.OAuth(hf_token_input)
224
+
225
+ model_id = HuggingfaceHubSearch(label="Select a model from HuggingFace Hub")
226
+
227
+ quantization_method = gr.Dropdown(
228
+ ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Select quantization method")
229
+ imatrix_quantization_method = gr.Dropdown(
230
+ ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Select imatrix quantization method", visible=False)
231
+ use_imatrix_checkbox = gr.Checkbox(label="Use imatrix")
232
+ private_repo_checkbox = gr.Checkbox(label="Create a private repo")
233
+ train_data_upload = gr.File(label="Upload train data for imatrix (optional)", visible=False)
234
+ split_model_checkbox = gr.Checkbox(label="Split model", visible=False)
235
+ split_max_tensors = gr.Number(label="Split Max Tensors", visible=False)
236
+ split_max_size = gr.Number(label="Split Max Size (MB)", visible=False)
237
+
238
+ quantized_model_output = gr.Textbox(label="Output")
239
+
240
+ use_imatrix_checkbox.change(fn=lambda x: [
241
+ imatrix_quantization_method.update(visible=x),
242
+ train_data_upload.update(visible=x),
243
+ split_model_checkbox.update(visible=x),
244
+ split_max_tensors.update(visible=x),
245
+ split_max_size.update(visible=x)
246
+ ], inputs=use_imatrix_checkbox, outputs=[imatrix_quantization_method, train_data_upload, split_model_checkbox, split_max_tensors, split_max_size])
247
+
248
+ process_button = gr.Button(label="Quantize and Upload")
249
+
250
+ process_button.click(
251
+ process_model,
252
+ inputs=[
253
+ model_id,
254
+ quantization_method,
255
+ use_imatrix_checkbox,
256
+ imatrix_quantization_method,
257
+ private_repo_checkbox,
258
+ train_data_upload,
259
+ split_model_checkbox,
260
+ split_max_tensors,
261
+ split_max_size,
262
+ hf_token
263
+ ],
264
+ outputs=[quantized_model_output],
265
+ )
266
+
267
+ if __name__ == "__main__":
268
+ demo.launch()