Ffftdtd5dtft commited on
Commit
efdd708
·
verified ·
1 Parent(s): 5a3cd3c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +672 -0
app.py ADDED
@@ -0,0 +1,672 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- START OF FILE app.py ---
2
+
3
+ import os
4
+ import shutil
5
+ import subprocess
6
+ import torch
7
+ from transformers import AutoConfig, AutoModelForCausalLM
8
+ from huggingface_hub import HfApi, whoami, ModelCard, list_models
9
+ from gradio_huggingfacehub_search import HuggingfaceHubSearch
10
+ from apscheduler.schedulers.background import BackgroundScheduler
11
+ from textwrap import dedent
12
+ import gradio as gr
13
+ import hashlib
14
+ import torch.nn.utils.prune as prune
15
+ import torch.nn.functional as F
16
+ from torch.utils.checkpoint import checkpoint
17
+ import logging
18
+ from datetime import datetime
19
+ from typing import List, Dict
20
+
21
+ logging.basicConfig(level=logging.INFO)
22
+
23
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
24
+ HF_TOKEN = os.environ.get("HF_TOKEN")
25
+ SPACE_ID = "Ffftdtd5dtft/gguf-my-repo" # Replace with your space ID if different
26
+
27
+ def generate_importance_matrix(model_path, train_data_path):
28
+ os.chdir("llama.cpp")
29
+ if not os.path.isfile(f"../{model_path}"):
30
+ raise Exception(f"Model file not found: {model_path}")
31
+ imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
32
+ process = subprocess.Popen(imatrix_command, shell=True)
33
+ try:
34
+ process.wait(timeout=3600)
35
+ except subprocess.TimeoutExpired:
36
+ process.kill()
37
+ os.chdir("..")
38
+
39
+ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
40
+ if oauth_token.token is None:
41
+ raise ValueError("You have to be logged in.")
42
+ split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
43
+ if split_max_size:
44
+ split_cmd += f" --split-max-size {split_max_size}"
45
+ split_cmd += f" {model_path} {model_path.split('.')[0]}"
46
+ result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
47
+ if result.returncode != 0:
48
+ raise Exception(f"Error splitting the model: {result.stderr}")
49
+ sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
50
+ if sharded_model_files:
51
+ api = HfApi(token=oauth_token.token)
52
+ for file in sharded_model_files:
53
+ file_path = os.path.join('.', file)
54
+ try:
55
+ api.upload_file(path_or_fileobj=file_path, path_in_repo=file, repo_id=repo_id)
56
+ except Exception as e:
57
+ raise Exception(f"Error uploading file {file_path}: {e}")
58
+ else:
59
+ raise Exception("No sharded files found.")
60
+
61
+ def quantize_to_q1_with_min(tensor, min_value=-1):
62
+ tensor = torch.sign(tensor)
63
+ tensor[tensor < min_value] = min_value
64
+ return tensor
65
+
66
+ def quantize_model_to_q1_with_min(model, min_value=-1):
67
+ for name, param in model.named_parameters():
68
+ if param.dtype in [torch.float32, torch.float16]:
69
+ with torch.no_grad():
70
+ param.copy_(quantize_to_q1_with_min(param.data, min_value))
71
+
72
+ def disable_unnecessary_components(model):
73
+ for name, module in model.named_modules():
74
+ if isinstance(module, torch.nn.Dropout):
75
+ module.p = 0.0
76
+ elif isinstance(module, torch.nn.BatchNorm1d):
77
+ module.eval()
78
+
79
+ def ultra_max_compress(model):
80
+ model = quantize_model_to_q1_with_min(model, min_value=-0.05)
81
+ disable_unnecessary_components(model)
82
+ with torch.no_grad():
83
+ for name, param in model.named_parameters():
84
+ if param.requires_grad:
85
+ param.requires_grad = False
86
+ param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
87
+ param.data = param.data.half()
88
+ model.eval()
89
+ for buffer_name, buffer in model.named_buffers():
90
+ if buffer.numel() == 0:
91
+ model._buffers.pop(buffer_name)
92
+ return model
93
+
94
+ def optimize_model_resources(model):
95
+ torch.set_grad_enabled(False)
96
+ model.eval()
97
+ for name, param in model.named_parameters():
98
+ param.requires_grad = False
99
+ if param.dtype == torch.float32:
100
+ param.data = param.data.half()
101
+ if hasattr(model, 'config'):
102
+ if hasattr(model.config, 'max_position_embeddings'):
103
+ model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
104
+ if hasattr(model.config, 'hidden_size'):
105
+ model.config.hidden_size = min(model.config.hidden_size, 768)
106
+ return model
107
+
108
+ def aggressive_optimize(model, reduce_layers_factor=0.5):
109
+ if hasattr(model.config, 'num_attention_heads'):
110
+ model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
111
+ if hasattr(model.config, 'hidden_size'):
112
+ model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
113
+ return model
114
+
115
+ def apply_quantization(model, use_int8_inference):
116
+ if use_int8_inference:
117
+ quantized_model = torch.quantization.quantize_dynamic(
118
+ model, {torch.nn.Linear}, dtype=torch.qint8
119
+ )
120
+ return quantized_model
121
+ else:
122
+ return model
123
+
124
+ def reduce_layers(model, reduction_factor=0.5):
125
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
126
+ original_num_layers = len(model.transformer.h)
127
+ new_num_layers = int(original_num_layers * reduction_factor)
128
+ model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
129
+ return model
130
+
131
+ def use_smaller_embeddings(model, reduction_factor=0.75):
132
+ if hasattr(model, 'config'):
133
+ original_embedding_dim = model.config.hidden_size
134
+ new_embedding_dim = int(original_embedding_dim * reduction_factor)
135
+ model.config.hidden_size = new_embedding_dim
136
+ if hasattr(model, 'resize_token_embeddings'):
137
+ model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
138
+ return model
139
+
140
+ def use_fp16_embeddings(model):
141
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
142
+ model.transformer.wte = model.transformer.wte.half()
143
+ return model
144
+
145
+ def quantize_embeddings(model):
146
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
147
+ model.transformer.wte = torch.quantization.quantize_dynamic(
148
+ model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
149
+ )
150
+ return model
151
+
152
+ def use_bnb_f16(model):
153
+ if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
154
+ model = model.to(dtype=torch.bfloat16)
155
+ return model
156
+
157
+ def use_group_quantization(model):
158
+ for module in model.modules():
159
+ if isinstance(module, torch.nn.Linear):
160
+ torch.quantization.fuse_modules(module, ['weight'], inplace=True)
161
+ torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
162
+ return model
163
+
164
+ def apply_layer_norm_trick(model):
165
+ for name, module in model.named_modules():
166
+ if isinstance(module, torch.nn.LayerNorm):
167
+ module.elementwise_affine = False
168
+ return model
169
+
170
+ def remove_padding(inputs, attention_mask):
171
+ last_non_padded = attention_mask.sum(dim=1) - 1
172
+ gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2)))
173
+ return gathered_inputs
174
+
175
+ def use_selective_quantization(model):
176
+ for module in model.modules():
177
+ if isinstance(module, torch.nn.MultiheadAttention):
178
+ torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
179
+ return model
180
+
181
+ def use_mixed_precision(model):
182
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'wte'):
183
+ model.transformer.wte = model.transformer.wte.half()
184
+ return model
185
+
186
+ def use_pruning_after_training(model, prune_amount=0.1):
187
+ from torch import nn as nn
188
+ for name, module in model.named_modules():
189
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
190
+ prune.l1_unstructured(module, name='weight', amount=prune_amount)
191
+ prune.remove(module, 'weight')
192
+ return model
193
+
194
+ def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
195
+ teacher_model.eval()
196
+ criterion = torch.nn.KLDivLoss(reduction='batchmean')
197
+
198
+ def distillation_loss(student_logits, teacher_logits):
199
+ student_probs = F.log_softmax(student_logits / temperature, dim=-1)
200
+ teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
201
+ return criterion(student_probs, teacher_probs) * (temperature**2)
202
+
203
+ def train_step(inputs, labels):
204
+ student_outputs = model(**inputs, labels=labels)
205
+ student_logits = student_outputs.logits
206
+ with torch.no_grad():
207
+ teacher_outputs = teacher_model(**inputs)
208
+ teacher_logits = teacher_outputs.logits
209
+ loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
210
+ return loss
211
+
212
+ return train_step
213
+
214
+ def use_weight_sharing(model):
215
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
216
+ if len(model.transformer.h) > 1:
217
+ model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
218
+ return model
219
+
220
+ def use_low_rank_approximation(model, rank_factor=0.5):
221
+ for module in model.modules():
222
+ if isinstance(module, torch.nn.Linear):
223
+ original_weight = module.weight.data
224
+ U, S, V = torch.linalg.svd(original_weight)
225
+ rank = int(S.size(0) * rank_factor)
226
+ module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
227
+ return model
228
+
229
+ def use_hashing_trick(model, num_hashes=1024):
230
+ def hash_features(features):
231
+ features_bytes = features.cpu().numpy().tobytes()
232
+ hash_object = hashlib.sha256(features_bytes)
233
+ hash_value = hash_object.hexdigest()
234
+ hashed_features = int(hash_value, 16) % num_hashes
235
+ return torch.tensor(hashed_features, device=features.device)
236
+
237
+ original_forward = model.forward
238
+
239
+ def forward(*args, **kwargs):
240
+ inputs = args[0]
241
+ hashed_inputs = hash_features(inputs)
242
+ return original_forward(hashed_inputs, *args[1:], **kwargs)
243
+
244
+ def use_quantization_aware_training(model):
245
+ model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
246
+ torch.quantization.prepare_qat(model, inplace=True)
247
+ torch.quantization.convert(model, inplace=True)
248
+ return model
249
+
250
+ def use_gradient_checkpointing(model):
251
+ def custom_forward(*inputs):
252
+ return checkpoint(model, *inputs)
253
+ model.forward = custom_forward
254
+ return model
255
+
256
+ def use_channel_pruning(model, prune_amount=0.1):
257
+ from torch import nn as nn
258
+ for module in model.modules():
259
+ if isinstance(module, nn.Conv2d):
260
+ prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
261
+ prune.remove(module, 'weight')
262
+ return model
263
+
264
+ def use_sparse_tensors(model, sparsity_threshold=0.01):
265
+ for name, param in model.named_parameters():
266
+ if param.dim() >= 2 and param.is_floating_point():
267
+ sparse_param = param.to_sparse()
268
+ sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
269
+ param.data = sparse_param.to_dense()
270
+ return model
271
+
272
+ def use_lora(model, r=8, lora_alpha=16, lora_dropout=0.05, target_modules=None):
273
+ from peft import LoraConfig, get_peft_model
274
+ config = LoraConfig(
275
+ r=r,
276
+ lora_alpha=lora_alpha,
277
+ lora_dropout=lora_dropout,
278
+ target_modules=target_modules if target_modules else ["q_proj", "v_proj"], # Example target modules
279
+ bias="none",
280
+ task_type="CAUSAL_LM"
281
+ )
282
+ model = get_peft_model(model, config)
283
+ return model
284
+
285
+ def use_adalora(model, target_r=8, init_r=12, tmask_init=0.01, beta1=0.85, beta2=0.99, loha=False, **kwargs):
286
+ from peft import AdaLoraConfig, get_peft_model
287
+ config = AdaLoraConfig(
288
+ target_r=target_r,
289
+ init_r=init_r,
290
+ tmask_init=tmask_init,
291
+ beta1=beta1,
292
+ beta2=beta2,
293
+ loha=loha,
294
+ task_type="CAUSAL_LM",
295
+ **kwargs
296
+ )
297
+ model = get_peft_model(model, config)
298
+ return model
299
+
300
+ def use_ia3(model, target_modules=None):
301
+ from peft import IA3Config, get_peft_model
302
+ config = IA3Config(
303
+ target_modules=target_modules if target_modules else ["k_proj", "v_proj", "down_proj"], # Example target modules
304
+ feedforward_modules=None,
305
+ task_type="CAUSAL_LM"
306
+ )
307
+ model = get_peft_model(model, config)
308
+ return model
309
+
310
+ def use_prompt_tuning(model, num_virtual_tokens=8, prompt_tuning_init_text="You are a helpful assistant."):
311
+ from peft import PromptTuningConfig, get_peft_model, TaskType
312
+ config = PromptTuningConfig(
313
+ task_type=TaskType.CAUSAL_LM,
314
+ num_virtual_tokens=num_virtual_tokens,
315
+ prompt_tuning_init_text=prompt_tuning_init_text,
316
+ tokenizer_name_or_path=model.config.tokenizer_class if hasattr(model.config, 'tokenizer_class') else None
317
+ )
318
+ model = get_peft_model(model, config)
319
+ return model
320
+
321
+ def apply_moe_layer_splitting(model, num_experts: int = 4, expert_capacity_factor: float = 2.0, moe_layer_freq: int = 2):
322
+ # Assumes a standard transformer block structure
323
+ if not hasattr(model, 'transformer') or not hasattr(model.transformer, 'h'):
324
+ logging.warning("Model does not have the expected transformer structure for MoE splitting.")
325
+ return model
326
+
327
+ from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock, MixtralBLock
328
+
329
+ for i in range(len(model.transformer.h)):
330
+ if (i + 1) % moe_layer_freq == 0:
331
+ original_layer = model.transformer.h[i]
332
+ # Extract necessary components, handling different layer structures
333
+ if isinstance(original_layer, MixtralBLock):
334
+ config = original_layer.config
335
+ new_moe_block = MixtralSparseMoeBlock(config, num_experts=num_experts, capacity_factor=expert_capacity_factor)
336
+ # Copy relevant weights - this might need adjustments based on the model
337
+ new_moe_block.load_state_dict(original_layer.mlp.state_dict(), strict=False)
338
+ model.transformer.h[i] = new_moe_block
339
+ else:
340
+ logging.warning(f"Skipping layer {i} for MoE, not a recognized block type.")
341
+ return model
342
+
343
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
344
+ oauth_token: gr.OAuthToken | None, apply_aggressive_optimization, apply_reduce_layers, apply_smaller_embeddings,
345
+ apply_weight_sharing, apply_low_rank_approx, use_lora_opt, use_adalora_opt, use_ia3_opt, use_prompt_tuning_opt,
346
+ apply_moe_splitting, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe,
347
+ is_automated=False):
348
+ if oauth_token.token is None and not is_automated:
349
+ raise ValueError("You must be logged in to use GGUF-my-repo")
350
+ elif oauth_token.token is None and is_automated:
351
+ logging.warning("Running in automated mode without user authentication.")
352
+
353
+ model_name = model_id.split('/')[-1]
354
+ fp16 = f"{model_name}.fp16.gguf"
355
+
356
+ try:
357
+ api = HfApi(token=oauth_token.token if oauth_token else None)
358
+ dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
359
+ pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
360
+ dl_pattern += pattern
361
+ api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
362
+
363
+ config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
364
+ model = AutoModelForCausalLM.from_pretrained(model_id, config=config, torch_dtype=torch.float16, trust_remote_code=True)
365
+
366
+ if apply_aggressive_optimization:
367
+ model = aggressive_optimize(model)
368
+ if apply_reduce_layers:
369
+ model = reduce_layers(model)
370
+ if apply_smaller_embeddings:
371
+ model = use_smaller_embeddings(model)
372
+ if apply_weight_sharing:
373
+ model = use_weight_sharing(model)
374
+ if apply_low_rank_approx:
375
+ model = use_low_rank_approximation(model)
376
+ if use_lora_opt:
377
+ model = use_lora(model)
378
+ if use_adalora_opt:
379
+ model = use_adalora(model)
380
+ if use_ia3_opt:
381
+ model = use_ia3(model)
382
+ if use_prompt_tuning_opt:
383
+ model = use_prompt_tuning(model)
384
+ if apply_moe_splitting:
385
+ model = apply_moe_layer_splitting(model, num_experts_moe, expert_capacity_factor_moe, moe_layer_freq_moe)
386
+
387
+ optimized_model_path = f"{model_name}_optimized"
388
+ model.save_pretrained(optimized_model_path)
389
+
390
+ conversion_script = "convert_hf_to_gguf.py"
391
+ fp16_conversion = f"python llama.cpp/{conversion_script} {optimized_model_path} --outtype f16 --outfile {fp16}"
392
+ result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
393
+ if result.returncode != 0:
394
+ raise Exception(f"Error converting to fp16: {result.stderr}")
395
+
396
+ imatrix_path = "llama.cpp/imatrix.dat"
397
+ if use_imatrix:
398
+ if train_data_file:
399
+ train_data_path = train_data_file.name
400
+ else:
401
+ train_data_path = "groups_merged.txt"
402
+ if not os.path.isfile(train_data_path):
403
+ raise Exception(f"Training data file not found: {train_data_path}")
404
+ generate_importance_matrix(fp16, train_data_path)
405
+
406
+ username = whoami(oauth_token.token)["name"] if oauth_token and oauth_token.token else "automated-gguf"
407
+ quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
408
+ quantized_gguf_path = quantized_gguf_name
409
+
410
+ if use_imatrix:
411
+ quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
412
+ else:
413
+ quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
414
+
415
+ result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
416
+ if result.returncode != 0:
417
+ raise Exception(f"Error quantizing: {result.stderr}")
418
+
419
+ try:
420
+ subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
421
+ except Exception as e:
422
+ raise Exception(f"Model verification failed: {e}")
423
+
424
+ new_repo_id = f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF"
425
+ new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
426
+
427
+ try:
428
+ card = ModelCard.load(model_id, token=oauth_token.token if oauth_token else None)
429
+ except:
430
+ card = ModelCard("")
431
+
432
+ if card.data.tags is None:
433
+ card.data.tags = []
434
+ card.data.tags.append("llama-cpp")
435
+ card.data.tags.append("gguf-my-repo")
436
+ card.data.base_model = model_id
437
+ optimization_notes = []
438
+ if apply_aggressive_optimization:
439
+ optimization_notes.append("Aggressive optimization applied.")
440
+ if apply_reduce_layers:
441
+ optimization_notes.append("Number of layers reduced.")
442
+ if apply_smaller_embeddings:
443
+ optimization_notes.append("Embedding size reduced.")
444
+ if apply_weight_sharing:
445
+ optimization_notes.append("Weight sharing applied.")
446
+ if apply_low_rank_approx:
447
+ optimization_notes.append(f"Low-rank approximation applied.")
448
+ if use_lora_opt:
449
+ optimization_notes.append("LoRA applied.")
450
+ if use_adalora_opt:
451
+ optimization_notes.append("AdaLoRA applied.")
452
+ if use_ia3_opt:
453
+ optimization_notes.append("IA3 applied.")
454
+ if use_prompt_tuning_opt:
455
+ optimization_notes.append("Prompt Tuning applied.")
456
+ if apply_moe_splitting:
457
+ optimization_notes.append(f"Mixture-of-Experts (MoE) layer splitting applied with {num_experts_moe} experts every {moe_layer_freq_moe} layers.")
458
+
459
+ card.text = dedent(
460
+ f"""
461
+ # {new_repo_id}
462
+ This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
463
+ Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
464
+
465
+ {' '.join(optimization_notes)}
466
+
467
+ ## Use with llama.cpp
468
+ Install llama.cpp through brew (works on Mac and Linux)
469
+
470
+ ```bash
471
+ brew install llama.cpp
472
+
473
+ ```
474
+ Invoke the llama.cpp server or the CLI.
475
+
476
+ ### CLI:
477
+ ```bash
478
+ llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
479
+ ```
480
+
481
+ ### Server:
482
+ ```bash
483
+ llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
484
+ ```
485
+
486
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
487
+ Step 1: Clone llama.cpp from GitHub.
488
+ ```
489
+ git clone https://github.com/ggerganov/llama.cpp
490
+ ```
491
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
492
+ ```
493
+ cd llama.cpp && LLAMA_CURL=1 make
494
+ ```
495
+ Step 3: Run inference through the main binary.
496
+ ```
497
+ ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
498
+ ```
499
+ or
500
+ ```
501
+ ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
502
+ ```
503
+ """
504
+ )
505
+ card.save(f"README.md")
506
+
507
+ if split_model:
508
+ split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
509
+ else:
510
+ try:
511
+ api.upload_file(path_or_fileobj=quantized_gguf_path, path_in_repo=quantized_gguf_name, repo_id=new_repo_id)
512
+ except Exception as e:
513
+ raise Exception(f"Error uploading quantized model: {e}")
514
+
515
+ if os.path.isfile(imatrix_path):
516
+ try:
517
+ api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
518
+ except Exception as e:
519
+ raise Exception(f"Error uploading imatrix.dat: {e}")
520
+
521
+ api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
522
+
523
+ log_message = f"Successfully processed and uploaded GGUF model for {model_id} to {new_repo_url}"
524
+ logging.info(log_message)
525
+ return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
526
+ except Exception as e:
527
+ error_message = f"Error processing model {model_id}: {e}"
528
+ logging.error(error_message)
529
+ return (f"Error: {e}", "error.png")
530
+ finally:
531
+ shutil.rmtree(model_name, ignore_errors=True)
532
+ shutil.rmtree(optimized_model_path, ignore_errors=True)
533
+
534
+ def select_models_for_automation():
535
+ # Example logic: Select top N most downloaded models
536
+ models = list_models(sort="downloads", direction=-1, limit=5)
537
+ return [model.modelId for model in models]
538
+
539
+ def get_automation_parameters():
540
+ # Example logic: Define default parameters or load from a config
541
+ return {
542
+ "q_method": "Q4_K_M",
543
+ "use_imatrix": False,
544
+ "imatrix_q_method": "IQ4_NL",
545
+ "private_repo": True,
546
+ "train_data_file": None,
547
+ "split_model": False,
548
+ "split_max_tensors": 256,
549
+ "split_max_size": None,
550
+ "apply_aggressive_optimization": True,
551
+ "apply_reduce_layers": True,
552
+ "apply_smaller_embeddings": True,
553
+ "apply_weight_sharing": False,
554
+ "apply_low_rank_approx": False,
555
+ "use_lora_opt": False,
556
+ "use_adalora_opt": False,
557
+ "use_ia3_opt": False,
558
+ "use_prompt_tuning_opt": False,
559
+ "apply_moe_splitting": False,
560
+ "num_experts_moe": 4,
561
+ "expert_capacity_factor_moe": 2.0,
562
+ "moe_layer_freq_moe": 2,
563
+ }
564
+
565
+ def automate_gguf_creation():
566
+ logging.info(f"Starting automated GGUF creation at {datetime.now()}")
567
+ api = HfApi(token=HF_TOKEN)
568
+ try:
569
+ whoami(token=HF_TOKEN) # Check if the token is valid
570
+ except Exception as e:
571
+ logging.error(f"Error with Hugging Face token: {e}")
572
+ return
573
+
574
+ models_to_process = select_models_for_automation()
575
+ automation_params = get_automation_parameters()
576
+
577
+ for model_id in models_to_process:
578
+ logging.info(f"Attempting to process model: {model_id}")
579
+ try:
580
+ process_model(model_id=model_id, oauth_token=None, is_automated=True, **automation_params)
581
+ except Exception as e:
582
+ logging.error(f"Failed to process model {model_id} automatically: {e}")
583
+
584
+ css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
585
+
586
+ with gr.Blocks(css=css) as demo:
587
+ gr.Markdown("You must be logged in to use GGUF-my-repo for manual processing. Automation runs in the background.")
588
+ oauth_token = gr.OAuthButton(min_width=250)
589
+ model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
590
+
591
+ q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
592
+ label="Quantization Method", info="GGML quantization type", value="Q4_K_M", filterable=False, visible=True)
593
+ imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
594
+ label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
595
+ use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
596
+ train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
597
+
598
+ size_reduction_accordion = gr.Accordion("Additional Size Reduction Techniques", open=False)
599
+ with size_reduction_accordion:
600
+ apply_aggressive_optimization = gr.Checkbox(value=True, label="Apply Aggressive Optimization", info="Reduces attention heads and hidden size.")
601
+ apply_reduce_layers = gr.Checkbox(value=True, label="Reduce Layers", info="Reduces the number of layers in the model.")
602
+ apply_smaller_embeddings = gr.Checkbox(value=True, label="Use Smaller Embeddings", info="Reduces the size of the embedding layer.")
603
+ apply_weight_sharing = gr.Checkbox(value=False, label="Apply Weight Sharing", info="Shares weights across layers to reduce parameters.")
604
+ apply_low_rank_approx = gr.Checkbox(value=False, label="Apply Low-Rank Approximation", info="Approximates weight matrices with lower rank.")
605
+ use_lora_opt = gr.Checkbox(value=False, label="Use LoRA", info="Applies Low-Rank Adaptation.")
606
+ use_adalora_opt = gr.Checkbox(value=False, label="Use AdaLoRA", info="Applies Adaptive Low-Rank Adaptation.")
607
+ use_ia3_opt = gr.Checkbox(value=False, label="Use IA3", info="Applies Infused Adapter by Inhibiting and Amplifying Inner Activations.")
608
+ use_prompt_tuning_opt = gr.Checkbox(value=False, label="Use Prompt Tuning", info="Adds trainable virtual tokens to the input embeddings.")
609
+ apply_moe_splitting = gr.Checkbox(value=False, label="Apply MoE Layer Splitting", info="Splits layers into a mixture-of-experts (MoE).", visible=False)
610
+ with gr.Row(visible=False) as moe_params:
611
+ num_experts_moe = gr.Number(value=4, label="Number of Experts", info="Number of experts to use in the MoE layers.", precision=0)
612
+ expert_capacity_factor_moe = gr.Number(value=2.0, label="Expert Capacity Factor", info="Capacity factor for each expert in the MoE layer.", precision=1)
613
+ moe_layer_freq_moe = gr.Number(value=2, label="MoE Layer Frequency", info="Apply MoE every N layers", precision=0)
614
+
615
+ private_repo = gr.Checkbox(value=True, label="Private Repo", info="Create a private repo under your username.")
616
+ split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
617
+ split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
618
+ split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
619
+
620
+ use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
621
+ use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
622
+ use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
623
+ split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
624
+ split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
625
+ apply_moe_splitting.change(fn=lambda apply_moe_splitting: gr.update(visible=apply_moe_splitting), inputs=apply_moe_splitting, outputs=moe_params)
626
+
627
+
628
+ iface = gr.Interface(
629
+ fn=process_model,
630
+ inputs=[
631
+ model_id,
632
+ q_method,
633
+ use_imatrix,
634
+ imatrix_q_method,
635
+ private_repo,
636
+ train_data_file,
637
+ split_model,
638
+ split_max_tensors,
639
+ split_max_size,
640
+ oauth_token,
641
+ apply_aggressive_optimization,
642
+ apply_reduce_layers,
643
+ apply_smaller_embeddings,
644
+ apply_weight_sharing,
645
+ apply_low_rank_approx,
646
+ use_lora_opt,
647
+ use_adalora_opt,
648
+ use_ia3_opt,
649
+ use_prompt_tuning_opt,
650
+ apply_moe_splitting,
651
+ num_experts_moe,
652
+ expert_capacity_factor_moe,
653
+ moe_layer_freq_moe,
654
+ ],
655
+ outputs=[
656
+ gr.Markdown(label="output"),
657
+ gr.Image(show_label=False),
658
+ ],
659
+ title="Create your own GGUF Quants, blazingly fast ⚡!",
660
+ description="The space takes an HF repo as an input, applies size reduction techniques, quantizes it and creates a Public or Private repo containing the selected quant under your HF user namespace. It also automates the creation of GGUF quants for popular models in the background.",
661
+ api_name=False
662
+ )
663
+
664
+ def restart_space():
665
+ HfApi().restart_space(repo_id=SPACE_ID, token=HF_TOKEN, factory_reboot=True)
666
+
667
+ scheduler = BackgroundScheduler()
668
+ scheduler.add_job(restart_space, "interval", seconds=21600)
669
+ scheduler.add_job(automate_gguf_creation, "interval", hours=6) # Run automation every 6 hours
670
+ scheduler.start()
671
+
672
+ demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)