File size: 6,871 Bytes
afc2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a734e7
 
 
 
 
 
afc2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import io
from ast import mod
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import torchvision.transforms as transforms
import torch
from huggingface_hub import hf_hub_download
from ellipse_rcnn import EllipseRCNN


# load model.pth from Filipstrozik/sat-tree-detection-v0 repository in hugging face
load_state_dict = torch.load(
    hf_hub_download("Filipstrozik/sat-tree-detection-v0", "model.pth"),
    weights_only=True,
)
model = EllipseRCNN()

model.load_state_dict(load_state_dict)
model.eval()


def conic_center(conic_matrix: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
    """Returns center of ellipse in 2D cartesian coordinate system with numerical stability."""
    # Extract the top-left 2x2 submatrix of the conic matrix
    A = conic_matrix[..., :2, :2]

    # Add stabilization for pseudoinverse computation by clamping singular values
    A_pinv = torch.linalg.pinv(A, rcond=torch.finfo(A.dtype).eps)

    # Extract the last two rows for the linear term
    b = -conic_matrix[..., :2, 2][..., None]

    # Stabilize any potential numerical instabilities
    centers = torch.matmul(A_pinv, b).squeeze()

    return centers[..., 0], centers[..., 1]


def ellipse_axes(conic_matrix: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
    """Returns semi-major and semi-minor axes of ellipse in 2D cartesian coordinate system."""
    lambdas = (
        torch.linalg.eigvalsh(conic_matrix[..., :2, :2])
        / (-torch.det(conic_matrix) / torch.det(conic_matrix[..., :2, :2]))[..., None]
    )
    axes = torch.sqrt(1 / lambdas)
    return axes[..., 0], axes[..., 1]


def ellipse_angle(conic_matrix: torch.Tensor) -> torch.Tensor:
    """Returns angle of ellipse in radians w.r.t. x-axis."""
    return (
        -torch.atan2(
            2 * conic_matrix[..., 1, 0],
            conic_matrix[..., 1, 1] - conic_matrix[..., 0, 0],
        )
        / 2
    )


def get_ellipse_params_from_matrices(ellipse_matrices):
    if ellipse_matrices.shape[0] == 0:
        return None
    a, b = ellipse_axes(ellipse_matrices)
    cx, cy = conic_center(ellipse_matrices)
    theta = ellipse_angle(ellipse_matrices)

    a = a.view(-1)
    b = b.view(-1)
    cx = cx.view(-1)
    cy = cy.view(-1)
    theta = theta.view(-1)

    ellipses = torch.stack([a, b, cx, cy, theta], dim=1).reshape(-1, 5)
    return ellipses


def plot_ellipses(
    ellipse_params: torch.Tensor,
    image: torch.Tensor,
    plot_centers: bool = False,
    rim_color: str = "r",
    alpha: float = 0.25,
) -> None:
    if ellipse_params is None:
        return
    a, b, cx, cy, theta = ellipse_params.unbind(-1)

    # multiply all pixel values by 4
    cx = cx * 4
    cy = cy * 4

    # draw ellipses
    for i in range(len(a)):
        ellipse = mpatches.Ellipse(
            (cx[i], cy[i]),
            width=a[i],
            height=b[i],
            angle=theta[i],
            fill=True,
            alpha=alpha,
            color=rim_color,
        )
        plt.gca().add_patch(ellipse)

        if plot_centers:
            plt.scatter(cx[i], cy[i], c=rim_color, s=10)

    plt.imshow(image)


# Define the necessary transformations and the inverse normalization
def invert_normalization(image, mean, std):
    for t, m, s in zip(image, mean, std):
        t.mul_(s).add_(m)
    return torch.clamp(image, 0, 1)


def process_image(image):
    original_size = image.size

    # Define the transform pipeline
    transform = transforms.Compose(
        [
            transforms.Resize((1024, 1024)),
            transforms.PILToTensor(),
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )

    image_tensor = transform(image).unsqueeze(0)  # Add batch dimension
    return image_tensor, original_size


def generate_prediction(image, rpn_nms_thresh, score_thresh, nms_thresh):
    # Preprocess image
    image_tensor, original_size = process_image(image)
    image_tensor = image_tensor.to("cpu")

    # Ensure the model is in evaluation mode
    model.rpn.nms_thresh = rpn_nms_thresh
    model.roi_heads.score_thresh = score_thresh
    model.roi_heads.nms_thresh = nms_thresh

    with torch.no_grad():
        prediction = model(image_tensor)[0]

    # Invert normalization for display
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    inverted_image = (
        invert_normalization(image_tensor, mean, std)
        .squeeze(0)
        .permute(1, 2, 0)
        .cpu()
        .numpy()
    )

    # Plot results with ellipses
    plt.figure(figsize=(10, 10))
    plt.imshow(inverted_image)
    plot_ellipses(
        get_ellipse_params_from_matrices(prediction["ellipse_matrices"]),
        inverted_image,
        plot_centers=True,
        rim_color="red",
        alpha=0.25,
    )
    red_patch = mpatches.Patch(color="red", label="Predicted")
    plt.legend(handles=[red_patch], loc="upper right")
    plt.gca().set_aspect(original_size[0] / original_size[1])
    plt.axis("off")
    plt.tight_layout()
    # Save the figure to a buffer and return as an image
    buf = io.BytesIO()
    plt.savefig(buf, format="png")
    buf.seek(0)
    with Image.open(buf) as output_image:
        output_image = output_image.copy()
    buf.close()
    return output_image


# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Tree Detection from Satellite Images")
    gr.Markdown(
        "Upload an image and see the detected trees with ellipses. For better predictions, upload a high-resoltion image of orthophotomap with zoom level 18."
    )
    gr.Markdown(
        "Try different values for RPN NMS Threshold, ROI Heads Score Threshold, and ROI Heads NMS Threshold to see how they affect the predictions."
    )

    with gr.Row():
        image_input = gr.Image(label="Input Image", type="pil")
        image_output = gr.Image(label="Detected Trees")

    examples = [
        ["examples/image1.jpg"],
        ["examples/image2.jpg"],
        ["examples/image3.jpg"],
    ]

    with gr.Row():
        rpn_nms_slider = gr.Slider(
            0.0, 1.0, value=model.rpn.nms_thresh, label="RPN NMS Threshold"
        )
        score_thresh_slider = gr.Slider(
            0.0,
            1.0,
            value=model.roi_heads.score_thresh,
            label="ROI Heads Score Threshold",
        )
        nms_thresh_slider = gr.Slider(
            0.0, 1.0, value=model.roi_heads.nms_thresh, label="ROI Heads NMS Threshold"
        )

    submit_button = gr.Button("Detect Trees")
    submit_button.click(
        fn=generate_prediction,
        inputs=[image_input, rpn_nms_slider, score_thresh_slider, nms_thresh_slider],
        outputs=image_output,
    )

    gr.Examples(examples=examples, inputs=image_input, outputs=image_output)


demo.launch()