File size: 6,871 Bytes
afc2161 9a734e7 afc2161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import io
from ast import mod
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import torchvision.transforms as transforms
import torch
from huggingface_hub import hf_hub_download
from ellipse_rcnn import EllipseRCNN
# load model.pth from Filipstrozik/sat-tree-detection-v0 repository in hugging face
load_state_dict = torch.load(
hf_hub_download("Filipstrozik/sat-tree-detection-v0", "model.pth"),
weights_only=True,
)
model = EllipseRCNN()
model.load_state_dict(load_state_dict)
model.eval()
def conic_center(conic_matrix: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Returns center of ellipse in 2D cartesian coordinate system with numerical stability."""
# Extract the top-left 2x2 submatrix of the conic matrix
A = conic_matrix[..., :2, :2]
# Add stabilization for pseudoinverse computation by clamping singular values
A_pinv = torch.linalg.pinv(A, rcond=torch.finfo(A.dtype).eps)
# Extract the last two rows for the linear term
b = -conic_matrix[..., :2, 2][..., None]
# Stabilize any potential numerical instabilities
centers = torch.matmul(A_pinv, b).squeeze()
return centers[..., 0], centers[..., 1]
def ellipse_axes(conic_matrix: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Returns semi-major and semi-minor axes of ellipse in 2D cartesian coordinate system."""
lambdas = (
torch.linalg.eigvalsh(conic_matrix[..., :2, :2])
/ (-torch.det(conic_matrix) / torch.det(conic_matrix[..., :2, :2]))[..., None]
)
axes = torch.sqrt(1 / lambdas)
return axes[..., 0], axes[..., 1]
def ellipse_angle(conic_matrix: torch.Tensor) -> torch.Tensor:
"""Returns angle of ellipse in radians w.r.t. x-axis."""
return (
-torch.atan2(
2 * conic_matrix[..., 1, 0],
conic_matrix[..., 1, 1] - conic_matrix[..., 0, 0],
)
/ 2
)
def get_ellipse_params_from_matrices(ellipse_matrices):
if ellipse_matrices.shape[0] == 0:
return None
a, b = ellipse_axes(ellipse_matrices)
cx, cy = conic_center(ellipse_matrices)
theta = ellipse_angle(ellipse_matrices)
a = a.view(-1)
b = b.view(-1)
cx = cx.view(-1)
cy = cy.view(-1)
theta = theta.view(-1)
ellipses = torch.stack([a, b, cx, cy, theta], dim=1).reshape(-1, 5)
return ellipses
def plot_ellipses(
ellipse_params: torch.Tensor,
image: torch.Tensor,
plot_centers: bool = False,
rim_color: str = "r",
alpha: float = 0.25,
) -> None:
if ellipse_params is None:
return
a, b, cx, cy, theta = ellipse_params.unbind(-1)
# multiply all pixel values by 4
cx = cx * 4
cy = cy * 4
# draw ellipses
for i in range(len(a)):
ellipse = mpatches.Ellipse(
(cx[i], cy[i]),
width=a[i],
height=b[i],
angle=theta[i],
fill=True,
alpha=alpha,
color=rim_color,
)
plt.gca().add_patch(ellipse)
if plot_centers:
plt.scatter(cx[i], cy[i], c=rim_color, s=10)
plt.imshow(image)
# Define the necessary transformations and the inverse normalization
def invert_normalization(image, mean, std):
for t, m, s in zip(image, mean, std):
t.mul_(s).add_(m)
return torch.clamp(image, 0, 1)
def process_image(image):
original_size = image.size
# Define the transform pipeline
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
return image_tensor, original_size
def generate_prediction(image, rpn_nms_thresh, score_thresh, nms_thresh):
# Preprocess image
image_tensor, original_size = process_image(image)
image_tensor = image_tensor.to("cpu")
# Ensure the model is in evaluation mode
model.rpn.nms_thresh = rpn_nms_thresh
model.roi_heads.score_thresh = score_thresh
model.roi_heads.nms_thresh = nms_thresh
with torch.no_grad():
prediction = model(image_tensor)[0]
# Invert normalization for display
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
inverted_image = (
invert_normalization(image_tensor, mean, std)
.squeeze(0)
.permute(1, 2, 0)
.cpu()
.numpy()
)
# Plot results with ellipses
plt.figure(figsize=(10, 10))
plt.imshow(inverted_image)
plot_ellipses(
get_ellipse_params_from_matrices(prediction["ellipse_matrices"]),
inverted_image,
plot_centers=True,
rim_color="red",
alpha=0.25,
)
red_patch = mpatches.Patch(color="red", label="Predicted")
plt.legend(handles=[red_patch], loc="upper right")
plt.gca().set_aspect(original_size[0] / original_size[1])
plt.axis("off")
plt.tight_layout()
# Save the figure to a buffer and return as an image
buf = io.BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
with Image.open(buf) as output_image:
output_image = output_image.copy()
buf.close()
return output_image
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Tree Detection from Satellite Images")
gr.Markdown(
"Upload an image and see the detected trees with ellipses. For better predictions, upload a high-resoltion image of orthophotomap with zoom level 18."
)
gr.Markdown(
"Try different values for RPN NMS Threshold, ROI Heads Score Threshold, and ROI Heads NMS Threshold to see how they affect the predictions."
)
with gr.Row():
image_input = gr.Image(label="Input Image", type="pil")
image_output = gr.Image(label="Detected Trees")
examples = [
["examples/image1.jpg"],
["examples/image2.jpg"],
["examples/image3.jpg"],
]
with gr.Row():
rpn_nms_slider = gr.Slider(
0.0, 1.0, value=model.rpn.nms_thresh, label="RPN NMS Threshold"
)
score_thresh_slider = gr.Slider(
0.0,
1.0,
value=model.roi_heads.score_thresh,
label="ROI Heads Score Threshold",
)
nms_thresh_slider = gr.Slider(
0.0, 1.0, value=model.roi_heads.nms_thresh, label="ROI Heads NMS Threshold"
)
submit_button = gr.Button("Detect Trees")
submit_button.click(
fn=generate_prediction,
inputs=[image_input, rpn_nms_slider, score_thresh_slider, nms_thresh_slider],
outputs=image_output,
)
gr.Examples(examples=examples, inputs=image_input, outputs=image_output)
demo.launch()
|