File size: 16,095 Bytes
8e9893b afc2161 8e9893b afc2161 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
from typing import Dict, List, Tuple, Optional, TypedDict, NamedTuple
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models.detection.roi_heads import RoIHeads, fastrcnn_loss
from .kld import SymmetricKLDLoss
from .wd import WassersteinLoss
from ..utils.conics import (
ellipse_to_conic_matrix,
ellipse_axes,
ellipse_angle,
conic_center,
)
class RegressorPrediction(NamedTuple):
"""
Represents the processed outputs of a regression model as a named tuple.
This class encapsulates regression model outputs in a structured format, where
each attribute corresponds to a specific component of the regression output.
These outputs can be directly used for post-processing steps such as transformation
into conic matrices or further evaluations of ellipse geometry.
Attributes
----------
d_a : torch.Tensor
The normalized semi-major axis scale factor (logarithmic) used to compute
the actual semi-major axis length of ellipses.
d_b : torch.Tensor
The normalized semi-minor axis scale factor (logarithmic) used to compute
the actual semi-minor axis length of ellipses.
d_x : torch.Tensor
The normalized x-coordinate translation factor, specifying the adjustment
to the center of bounding boxes for ellipse placement.
d_y : torch.Tensor
The normalized y-coordinate translation factor, specifying the adjustment
to the center of bounding boxes for ellipse placement.
d_theta : torch.Tensor
The normalized rotation angle factor which is processed to derive the
actual rotation angle (in radians) of ellipses.
Notes
-----
- The attributes `d_a` and `d_b`, representing scale factors for the semi-major
and semi-minor axes, are typically bounded between 0 and 1 using a sigmoid activation.
- The attributes `d_x` and `d_y` serve as adjustments to bounding box centers, normalized
with respect to the bounding box diagonals.
- The attribute `d_theta` is normalized to ensure the rotation angle lies within
a valid range (after transformation, typically between -π/2 and π/2 radians).
- These normalized outputs are post-processed together with bounding box information
to construct actionable ellipse parameters such as their axes lengths, centers,
and angles.
- This structure simplifies downstream regression tasks, such as conversion into
conic matrices or calculation of geometrical losses.
"""
d_a: torch.Tensor
d_b: torch.Tensor
d_theta: torch.Tensor
@property
def device(self) -> torch.device:
return self.d_a.device
@property
def dtype(self) -> torch.dtype:
return self.d_a.dtype
def split(self, split_size: list[int] | int, dim: int = 0):
return [
RegressorPrediction(*tensors)
for tensors in zip(
*[torch.split(attr, split_size, dim=dim) for attr in self]
)
]
class EllipseRegressor(nn.Module):
"""
EllipseRegressor is a neural network module designed to predict parameters of
an ellipse given input features.
This class is a PyTorch module that uses a feedforward neural network to predict
the normalized five parameters of an ellipse: semi-major axis `a`, semi-minor axis `b`, center
coordinates (`x`, `y`), and orientation `theta`. The class includes mechanisms
for batch normalization and uses Xavier weight initialization for improved
training stability and convergence.
Attributes
----------
ffnn : nn.Sequential
A feedforward neural network with two hidden layers and ReLU activations.
"""
def __init__(self, in_channels: int = 1024, hidden_size: int = 64):
super().__init__()
# Separate prediction heads for better gradient flow
self.ffnn = nn.Sequential(
nn.Linear(in_channels, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 3),
nn.Tanh(),
)
# Initialize with small values
for lin in self.ffnn:
if isinstance(lin, nn.Linear):
nn.init.xavier_uniform_(lin.weight, gain=0.01)
nn.init.zeros_(lin.bias)
def forward(self, x: torch.Tensor) -> RegressorPrediction:
x = x.flatten(start_dim=1)
x = self.ffnn(x)
d_a, d_b, d_theta = x.unbind(dim=-1)
return RegressorPrediction(d_a=d_a, d_b=d_b, d_theta=d_theta)
def postprocess_ellipse_predictor(
pred: RegressorPrediction,
box_proposals: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Processes elliptical predictor outputs and converts them into conic matrices.
Parameters
----------
pred : RegressorPrediction
The output of the elliptical predictor model.
box_proposals : torch.Tensor
Tensor containing proposed bounding box information, with shape (N, 4). Each box
is represented as a 4-tuple (x_min, y_min, x_max, y_max).
Returns
-------
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
A tuple containing:
- a (torch.Tensor): Computed semi-major axis of the ellipses.
- b (torch.Tensor): Computed semi-minor axis of the ellipses.
- x (torch.Tensor): X-coordinates of the ellipse centers.
- y (torch.Tensor): Y-coordinates of the ellipse centers.
- theta (torch.Tensor): Rotation angles (in radians) for the ellipses.
"""
d_a, d_b, d_theta = pred
# Pre-compute box width, height, and diagonal
box_width = box_proposals[:, 2] - box_proposals[:, 0]
box_height = box_proposals[:, 3] - box_proposals[:, 1]
box_diag = torch.sqrt(box_width**2 + box_height**2)
a = box_diag * d_a.exp()
b = box_diag * d_b.exp()
box_x = box_proposals[:, 0] + box_width * 0.5
box_y = box_proposals[:, 1] + box_height * 0.5
theta = (d_theta * 2.0 - 1.0) * (torch.pi / 2)
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
theta = torch.where(
cos_theta >= 0,
torch.atan2(sin_theta, cos_theta),
torch.atan2(-sin_theta, -cos_theta),
)
return a, b, box_x, box_y, theta
class EllipseLossDict(TypedDict):
loss_ellipse_kld: torch.Tensor
loss_ellipse_smooth_l1: torch.Tensor
loss_ellipse_wasserstein: torch.Tensor
def ellipse_loss(
pred: RegressorPrediction,
A_target: List[torch.Tensor],
pos_matched_idxs: List[torch.Tensor],
box_proposals: List[torch.Tensor],
kld_loss_fn: SymmetricKLDLoss,
wd_loss_fn: WassersteinLoss,
) -> EllipseLossDict:
pos_matched_idxs_batched = torch.cat(pos_matched_idxs, dim=0)
A_target = torch.cat(A_target, dim=0)[pos_matched_idxs_batched]
box_proposals = torch.cat(box_proposals, dim=0)
if A_target.numel() == 0:
return {
"loss_ellipse_kld": torch.tensor(0.0, device=pred.device, dtype=pred.dtype),
"loss_ellipse_smooth_l1": torch.tensor(
0.0, device=pred.device, dtype=pred.dtype
),
"loss_ellipse_wasserstein": torch.tensor(
0.0, device=pred.device, dtype=pred.dtype
),
}
a_target, b_target = ellipse_axes(A_target)
theta_target = ellipse_angle(A_target)
# Box proposal parameters
box_width = box_proposals[:, 2] - box_proposals[:, 0]
box_height = box_proposals[:, 3] - box_proposals[:, 1]
box_diag = torch.sqrt(box_width**2 + box_height**2).clamp(min=1e-6)
# Normalize target variables
da_target = (a_target / box_diag).log()
db_target = (b_target / box_diag).log()
dtheta_target = (theta_target / (torch.pi / 2) + 1) / 2
# Direct parameter losses
d_a, d_b, d_theta = pred
pred_t = torch.stack([d_a, d_b, d_theta], dim=1)
target_t = torch.stack([da_target, db_target, dtheta_target], dim=1)
loss_smooth_l1 = F.smooth_l1_loss(pred_t, target_t, beta=(1 / 9), reduction="sum")
loss_smooth_l1 /= box_proposals.shape[0]
loss_smooth_l1 = loss_smooth_l1.nan_to_num(nan=0.0).clip(max=float(1e4))
a, b, x, y, theta = postprocess_ellipse_predictor(pred, box_proposals)
A_pred = ellipse_to_conic_matrix(a=a, b=b, theta=theta, x=x, y=y)
loss_kld = kld_loss_fn.forward(A_pred, A_target).clip(max=float(1e4)).mean() * 0.1
loss_wd = torch.zeros(1, device=pred.device, dtype=pred.dtype)
# loss_wd = wd_loss_fn.forward(A_pred, A_target).clip(max=float(1e4)).mean() * 0.1
return {
"loss_ellipse_kld": loss_kld,
"loss_ellipse_smooth_l1": loss_smooth_l1,
"loss_ellipse_wasserstein": loss_wd,
}
class EllipseRoIHeads(RoIHeads):
def __init__(
self,
box_roi_pool: nn.Module,
box_head: nn.Module,
box_predictor: nn.Module,
fg_iou_thresh: float,
bg_iou_thresh: float,
batch_size_per_image: int,
positive_fraction: float,
bbox_reg_weights: Optional[Tuple[float, float, float, float]],
score_thresh: float,
nms_thresh: float,
detections_per_img: int,
ellipse_roi_pool: nn.Module,
ellipse_head: nn.Module,
ellipse_predictor: nn.Module,
# Loss parameters
kld_shape_only: bool = False,
kld_normalize: bool = False,
# Numerical stability parameters
nan_to_num: float = 10.0,
loss_scale: float = 1.0,
):
super().__init__(
box_roi_pool,
box_head,
box_predictor,
fg_iou_thresh,
bg_iou_thresh,
batch_size_per_image,
positive_fraction,
bbox_reg_weights,
score_thresh,
nms_thresh,
detections_per_img,
)
self.ellipse_roi_pool = ellipse_roi_pool
self.ellipse_head = ellipse_head
self.ellipse_predictor = ellipse_predictor
self.kld_loss = SymmetricKLDLoss(
shape_only=kld_shape_only,
normalize=kld_normalize,
nan_to_num=nan_to_num,
)
self.wd_loss = WassersteinLoss(
nan_to_num=nan_to_num,
normalize=kld_normalize,
)
self.loss_scale = loss_scale
def has_ellipse_reg(self) -> bool:
if self.ellipse_roi_pool is None:
return False
if self.ellipse_head is None:
return False
if self.ellipse_predictor is None:
return False
return True
def postprocess_ellipse_regressions(self):
pass
def forward(
self,
features: Dict[str, torch.Tensor],
proposals: List[torch.Tensor],
image_shapes: List[Tuple[int, int]],
targets: Optional[List[Dict[str, torch.Tensor]]] = None,
) -> Tuple[List[Dict[str, torch.Tensor]], Dict[str, torch.Tensor]]:
if targets is not None:
for t in targets:
floating_point_types = (torch.float, torch.double, torch.half)
if t["boxes"].dtype not in floating_point_types:
raise TypeError("target boxes must be of float type")
if t["ellipse_matrices"].dtype not in floating_point_types:
raise TypeError("target ellipse_offsets must be of float type")
if t["labels"].dtype != torch.int64:
raise TypeError("target labels must be of int64 type")
if self.training:
proposals, matched_idxs, labels, regression_targets = (
self.select_training_samples(proposals, targets)
)
else:
labels = None
regression_targets = None
matched_idxs = None
box_features = self.box_roi_pool(features, proposals, image_shapes)
box_features = self.box_head(box_features)
class_logits, box_regression = self.box_predictor(box_features)
result: List[Dict[str, torch.Tensor]] = []
losses = {}
if self.training:
if labels is None or regression_targets is None:
raise ValueError(
"Labels and regression targets must not be None during training"
)
loss_classifier, loss_box_reg = fastrcnn_loss(
class_logits, box_regression, labels, regression_targets
)
losses = {"loss_classifier": loss_classifier, "loss_box_reg": loss_box_reg}
else:
boxes, scores, labels = self.postprocess_detections(
class_logits, box_regression, proposals, image_shapes
)
num_images = len(boxes)
for i in range(num_images):
result.append(
{
"boxes": boxes[i],
"labels": labels[i],
"scores": scores[i],
}
)
if self.has_ellipse_reg():
ellipse_box_proposals = [p["boxes"] for p in result]
if self.training:
if matched_idxs is None:
raise ValueError("matched_idxs must not be None during training")
# during training, only focus on positive boxes
num_images = len(proposals)
ellipse_box_proposals = []
pos_matched_idxs = []
for img_id in range(num_images):
pos = torch.where(labels[img_id] > 0)[0]
ellipse_box_proposals.append(proposals[img_id][pos])
pos_matched_idxs.append(matched_idxs[img_id][pos])
else:
pos_matched_idxs = None # type: ignore
if self.ellipse_roi_pool is not None:
ellipse_features = self.ellipse_roi_pool(
features, ellipse_box_proposals, image_shapes
)
ellipse_features = self.ellipse_head(ellipse_features)
ellipse_shapes_normalised = self.ellipse_predictor(ellipse_features)
else:
raise Exception("Expected ellipse_roi_pool to be not None")
loss_ellipse_regressor = {}
if self.training:
if targets is None:
raise ValueError("Targets must not be None during training")
if pos_matched_idxs is None:
raise ValueError(
"pos_matched_idxs must not be None during training"
)
if ellipse_shapes_normalised is None:
raise ValueError(
"ellipse_shapes_normalised must not be None during training"
)
ellipse_matrix_targets = [t["ellipse_matrices"] for t in targets]
rcnn_loss_ellipse = ellipse_loss(
ellipse_shapes_normalised,
ellipse_matrix_targets,
pos_matched_idxs,
ellipse_box_proposals,
self.kld_loss,
self.wd_loss,
)
if self.loss_scale != 1.0:
rcnn_loss_ellipse["loss_ellipse_kld"] *= self.loss_scale
rcnn_loss_ellipse["loss_ellipse_smooth_l1"] *= self.loss_scale
loss_ellipse_regressor.update(rcnn_loss_ellipse)
else:
ellipses_per_image = [lbl.shape[0] for lbl in labels]
for pred, r, box in zip(
ellipse_shapes_normalised.split(ellipses_per_image, dim=0),
result,
ellipse_box_proposals,
):
a, b, x, y, theta = postprocess_ellipse_predictor(pred, box)
A_pred = ellipse_to_conic_matrix(a=a, b=b, theta=theta, x=x, y=y)
r["ellipse_matrices"] = A_pred
# r["boxes"] = bbox_ellipse(A_pred)
losses.update(loss_ellipse_regressor)
return result, losses
|