File size: 9,762 Bytes
afc2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from types import NoneType
from typing import List, Tuple, Optional, Any

import pytorch_lightning as pl
import torch
from torch import nn
from torchvision.models import ResNet50_Weights, WeightsEnum
from torchvision.models.detection.anchor_utils import AnchorGenerator
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
from torchvision.models.detection.faster_rcnn import TwoMLPHead, FastRCNNPredictor  # noqa: F
from torchvision.models.detection.generalized_rcnn import GeneralizedRCNN
from torchvision.models.detection.rpn import RPNHead, RegionProposalNetwork
from torchvision.models.detection.transform import GeneralizedRCNNTransform
from torchvision.ops import MultiScaleRoIAlign

from .ellipse_roi_head import EllipseRoIHeads, EllipseRegressor
from ..utils.types import CollatedBatchType


class EllipseRCNN(GeneralizedRCNN):
    def __init__(
        self,
        num_classes: int = 2,
        # transform parameters
        backbone_name: str = "resnet50",
        weights: WeightsEnum | str = ResNet50_Weights.IMAGENET1K_V1,
        min_size: int = 256,
        max_size: int = 512,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        # Region Proposal Network parameters
        rpn_anchor_generator: Optional[nn.Module] = None,
        rpn_head: Optional[nn.Module] = None,
        rpn_pre_nms_top_n_train: int = 2000,
        rpn_pre_nms_top_n_test: int = 1000,
        rpn_post_nms_top_n_train: int = 2000,
        rpn_post_nms_top_n_test: int = 1000,
        rpn_nms_thresh: float = 0.7,
        rpn_fg_iou_thresh: float = 0.7,
        rpn_bg_iou_thresh: float = 0.3,
        rpn_batch_size_per_image: int = 256,
        rpn_positive_fraction: float = 0.5,
        rpn_score_thresh: float = 0.0,
        # Box parameters
        box_roi_pool: Optional[nn.Module] = None,
        box_head: Optional[nn.Module] = None,
        box_predictor: Optional[nn.Module] = None,
        box_score_thresh: float = 0.05,
        box_nms_thresh: float = 0.5,
        box_detections_per_img: int = 100,
        box_fg_iou_thresh: float = 0.5,
        box_bg_iou_thresh: float = 0.5,
        box_batch_size_per_image: int = 512,
        box_positive_fraction: float = 0.25,
        bbox_reg_weights: Optional[Tuple[float, float, float, float]] = None,
        # Ellipse regressor
        ellipse_roi_pool: Optional[nn.Module] = None,
        ellipse_head: Optional[nn.Module] = None,
        ellipse_predictor: Optional[nn.Module] = None,
        ellipse_loss_scale: float = 1.0,
        ellipse_loss_normalize: bool = False,
    ):
        if backbone_name != "resnet50" and weights == ResNet50_Weights.IMAGENET1K_V1:
            raise ValueError(
                "If backbone_name is not resnet50, weights_enum must be specified"
            )

        backbone = resnet_fpn_backbone(
            backbone_name=backbone_name, weights=weights, trainable_layers=5
        )

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
                "same for all the levels)"
            )

        if not isinstance(rpn_anchor_generator, (AnchorGenerator, NoneType)):
            raise TypeError(
                "rpn_anchor_generator must be an instance of AnchorGenerator or None"
            )

        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, NoneType)):
            raise TypeError(
                "box_roi_pool must be an instance of MultiScaleRoIAlign or None"
            )

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError(
                    "num_classes should be None when box_predictor is specified"
                )
        else:
            if box_predictor is None:
                raise ValueError(
                    "num_classes should not be None when box_predictor "
                    "is not specified"
                )

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        if rpn_head is None:
            rpn_head = RPNHead(
                out_channels, rpn_anchor_generator.num_anchors_per_location()[0]
            )

        rpn_pre_nms_top_n = dict(
            training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test
        )
        rpn_post_nms_top_n = dict(
            training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test
        )

        rpn = RegionProposalNetwork(
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )

        default_representation_size = 1024

        if box_roi_pool is None:
            box_roi_pool = MultiScaleRoIAlign(
                featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2
            )

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            if isinstance(resolution, int):
                box_head = TwoMLPHead(
                    out_channels * resolution**2, default_representation_size
                )
            else:
                raise ValueError(
                    "resolution should be an int but is {}".format(resolution)
                )

        if box_predictor is None:
            box_predictor = FastRCNNPredictor(default_representation_size, num_classes)

        if ellipse_roi_pool is None:
            ellipse_roi_pool = MultiScaleRoIAlign(
                featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2
            )

        resolution = box_roi_pool.output_size[0]
        if ellipse_head is None:
            if isinstance(resolution, int):
                ellipse_head = TwoMLPHead(
                    out_channels * resolution**2, default_representation_size
                )
            else:
                raise ValueError(
                    "resolution should be an int but is {}".format(resolution)
                )

        if ellipse_predictor is None:
            ellipse_predictor = EllipseRegressor(
                default_representation_size, num_classes
            )

        roi_heads = EllipseRoIHeads(
            # Box
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
            # Ellipse
            ellipse_roi_pool=ellipse_roi_pool,
            ellipse_head=ellipse_head,
            ellipse_predictor=ellipse_predictor,
            loss_scale=ellipse_loss_scale,
            kld_normalize=ellipse_loss_normalize,
        )

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

        super().__init__(backbone, rpn, roi_heads, transform)


class EllipseRCNNLightning(pl.LightningModule):
    def __init__(
        self,
        model: EllipseRCNN,
        lr: float = 1e-4,
        weight_decay: float = 1e-4,
    ):
        super().__init__()
        self.model = model
        self.save_hyperparameters(ignore=["model"])

    def configure_optimizers(self) -> Any:
        optimizer = torch.optim.AdamW(
            self.model.parameters(),
            lr=self.hparams.lr,
            weight_decay=self.hparams.weight_decay,
            amsgrad=True,
        )
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer, mode="min", factor=0.5, patience=2, min_lr=1e-6
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {"scheduler": scheduler, "monitor": "val/loss_total"},
        }

    def training_step(
        self, batch: CollatedBatchType, batch_idx: int = 0
    ) -> torch.Tensor:
        images, targets = batch
        loss_dict = self.model(images, targets)
        self.log_dict(
            {f"train/{k}": v for k, v in loss_dict.items()},
            prog_bar=True,
            logger=True,
            on_step=True,
        )

        loss = sum(loss_dict.values())
        self.log("train/loss_total", loss, prog_bar=True, logger=True, on_step=True)

        return loss

    def validation_step(
        self, batch: CollatedBatchType, batch_idx: int = 0
    ) -> torch.Tensor:
        self.train(True)
        images, targets = batch

        loss_dict = self.model(images, targets)

        self.log_dict(
            {f"val/{k}": v for k, v in loss_dict.items()},
            logger=True,
            on_step=False,
            on_epoch=True,
        )

        val_loss = sum(loss_dict.values())
        self.log(
            "val/loss_total",
            val_loss,
            prog_bar=True,
            logger=True,
            on_step=False,
            on_epoch=True,
        )

        self.log(
            "hp_metric",
            val_loss,
        )

        self.log(
            "lr",
            self.lr_schedulers().get_last_lr()[0],
        )

        return val_loss