File size: 8,225 Bytes
afc2161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Data loader and module for the FDDB dataset.
https://vis-www.cs.umass.edu/fddb/
"""

from glob import glob
from typing import Any
from pathlib import Path

import torch
import pandas as pd
import PIL.Image
import torchvision.transforms
import pytorch_lightning as pl
from torch.utils.data import DataLoader, random_split

from ellipse_rcnn.utils.types import TargetDict, ImageTargetTuple, EllipseTuple
from ellipse_rcnn.utils.conics import bbox_ellipse, ellipse_to_conic_matrix, conic_center, unimodular_matrix
from ellipse_rcnn.utils.data.base import EllipseDatasetBase, collate_fn


def preprocess_label_files(root_path: str) -> dict[str, list[EllipseTuple]]:
    label_files = glob(f"{root_path}/labels/*.txt")

    file_paths = []
    ellipse_data = []

    for filename in label_files:
        with open(filename) as f:
            if "ellipseList" not in filename:
                file_paths += [p.strip("\n") for p in f.readlines()]
            else:
                ellipse_data += [p.strip("\n") for p in f.readlines()]

    pdf_file_paths = pd.DataFrame({"path": file_paths})
    pdf_file_paths["path_idx"] = pdf_file_paths.index

    pdf_ellipse_data = pd.DataFrame({"data": ellipse_data})
    pdf_ellipse_data["data_idx"] = pdf_ellipse_data.index

    pdf_file_data_mapping = pdf_file_paths.merge(
        pdf_ellipse_data, left_on="path", right_on="data", how="left"
    )

    ellipse_dict: dict[str, list[EllipseTuple]] = {
        str(k): [] for k in pdf_file_paths["path"]
    }

    for i, r in pdf_file_data_mapping.iterrows():
        data_idx = r["data_idx"]
        num_ellipses = int(ellipse_data[data_idx + 1])
        file_path = r["path"]
        for j in range(data_idx + 2, data_idx + num_ellipses + 2):
            a, b, theta, x, y = [
                float(v) for v in ellipse_data[j].split(" ")[:-1] if len(v) > 0
            ]
            ellipse_params = EllipseTuple(a, b, theta, x, y)
            ellipse_dict[file_path].append(ellipse_params)

    return ellipse_dict


class FDDB(EllipseDatasetBase):
    def __init__(
        self,
        root_path: str | Path,
        ellipse_dict: dict[str, list[EllipseTuple]] | None = None,
        transform: Any = None,
    ) -> None:
        self.root_path = Path(root_path) if isinstance(root_path, str) else root_path
        if transform is None:
            self.transform = torchvision.transforms.Compose(
                [
                    torchvision.transforms.ToTensor(),
                    torchvision.transforms.Normalize(
                        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                    ),
                ]
            )
        else:
            self.transform = transform
        self.ellipse_dict = ellipse_dict or preprocess_label_files(root_path)

    def __len__(self) -> int:
        return len(self.ellipse_dict)

    def load_target_dict(self, index: int) -> TargetDict:
        key = list(self.ellipse_dict.keys())[index]
        ellipses_list = self.ellipse_dict[key]

        a = torch.tensor([[e.a for e in ellipses_list]])
        b = torch.tensor([[e.b for e in ellipses_list]])
        theta = torch.tensor([[e.theta for e in ellipses_list]])
        x = torch.tensor([[e.x for e in ellipses_list]])
        y = torch.tensor([[e.y for e in ellipses_list]])

        ellipse_matrices = ellipse_to_conic_matrix(a=a, b=b, x=x, y=y, theta=theta)

        if torch.stack(conic_center(ellipse_matrices)).isnan().any():
            raise ValueError("NaN values in ellipse matrices. Please check the data.")

        if len(ellipse_matrices.shape) == 2:
            ellipse_matrices = ellipse_matrices.unsqueeze(0)

        boxes = bbox_ellipse(ellipse_matrices, box_type="xyxy")

        num_objs = len(boxes)

        labels = torch.ones((num_objs,), dtype=torch.int64)
        image_id = torch.tensor([index])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        target = TargetDict(
            boxes=boxes,
            labels=labels,
            image_id=image_id,
            area=area,
            iscrowd=iscrowd,
            ellipse_matrices=ellipse_matrices,
        )

        return target

    def load_image(self, index: int) -> PIL.Image.Image:
        key = list(self.ellipse_dict.keys())[index]
        file_path = str(Path(self.root_path) / "images" / Path(key)) + ".jpg"
        return PIL.Image.open(file_path)

    def __getitem__(self, idx: int) -> ImageTargetTuple:
        image = self.load_image(idx)
        target_dict = self.load_target_dict(idx)

        # If the image is grayscale, convert it to RGB
        if image.mode == "L":
            image = image.convert("RGB")

        image = self.transform(image)

        return image, target_dict

    def __repr__(self) -> str:
        return f"FDDB<img={len(self)}>"

    def split(self, fraction: float, shuffle: bool = False) -> tuple["FDDB", "FDDB"]:
        """
        Splits the dataset into two subsets based on the given fraction.

        Args:
            fraction (float): Fraction of the dataset for the first subset (0 < fraction < 1).
            shuffle (bool): If True, dataset keys will be shuffled before splitting.

        Returns:
            tuple[FDDB, FDDB]: Two FDDB instances, one with the fraction of data,
                               and the other with the remaining data.
        """
        if not (0 < fraction < 1):
            raise ValueError("The fraction must be between 0 and 1.")

        keys = list(self.ellipse_dict.keys())
        if shuffle:
            import random

            random.shuffle(keys)

        total_length = len(keys)
        split_index = int(total_length * fraction)

        subset1_keys = keys[:split_index]
        subset2_keys = keys[split_index:]

        subset1_ellipse_dict = {key: self.ellipse_dict[key] for key in subset1_keys}
        subset2_ellipse_dict = {key: self.ellipse_dict[key] for key in subset2_keys}

        subset1 = FDDB(
            self.root_path, ellipse_dict=subset1_ellipse_dict, transform=self.transform
        )
        subset2 = FDDB(
            self.root_path, ellipse_dict=subset2_ellipse_dict, transform=self.transform
        )

        return subset1, subset2


class FDDBLightningDataModule(pl.LightningDataModule):
    def __init__(
        self,
        data_dir: str,
        batch_size: int = 16,
        train_fraction: float = 0.8,
        transform: Any = None,
        num_workers: int = 0,
    ) -> None:
        super().__init__()
        self.data_dir = data_dir
        self.batch_size = batch_size
        self.train_fraction = train_fraction
        self.transform = transform
        self.dataset: FDDB | None = None
        self.train_dataset = None
        self.val_dataset = None
        self.num_workers = num_workers

    def prepare_data(self) -> None:
        # Ensure data preparation or downloading is done here.
        pass

    def setup(self, stage: str | None = None) -> None:
        # Instantiate the FDDB dataset and split it into training and validation subsets.
        self.dataset = FDDB(self.data_dir, transform=self.transform)

        train_size = int(len(self.dataset) * self.train_fraction)
        val_size = len(self.dataset) - train_size
        self.train_dataset, self.val_dataset = random_split(
            self.dataset, [train_size, val_size]
        )

    def train_dataloader(self) -> DataLoader[ImageTargetTuple]:
        return DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            collate_fn=collate_fn,
            num_workers=self.num_workers,
        )

    def val_dataloader(self) -> DataLoader[ImageTargetTuple]:
        return DataLoader(
            self.val_dataset,
            batch_size=self.batch_size,
            collate_fn=collate_fn,
            num_workers=self.num_workers,
        )

    def test_dataloader(self) -> DataLoader[ImageTargetTuple]:
        # Placeholder for test data; currently returns the validation dataloader as a default.
        return DataLoader(
            self.val_dataset, batch_size=self.batch_size, collate_fn=collate_fn
        )