Filipstrozik
Add initial implementation of EllipseRCNN model and dataset utilities
afc2161
import torch
from ellipse_rcnn.utils.conics import conic_center
def mv_kullback_leibler_divergence(
A1: torch.Tensor,
A2: torch.Tensor,
*,
shape_only: bool = False,
) -> torch.Tensor:
"""
Compute multi-variate KL divergence between ellipses represented by their matrices.
Args:
A1, A2: Ellipse matrices of shape (..., 3, 3)
shape_only: If True, ignores displacement term
"""
# Ensure that batch sizes are equal
if A1.shape[:-2] != A2.shape[:-2]:
raise ValueError(
f"Batch size mismatch: A1 has shape {A1.shape[:-2]}, A2 has shape {A2.shape[:-2]}"
)
# Extract the upper 2x2 blocks as covariance matrices
cov1 = A1[..., :2, :2]
cov2 = A2[..., :2, :2]
# Compute centers
m1 = torch.vstack(conic_center(A1)).T[..., None]
m2 = torch.vstack(conic_center(A2)).T[..., None]
# Compute inverse
try:
cov2_inv = torch.linalg.inv(cov2)
except RuntimeError:
cov2_inv = torch.linalg.pinv(cov2)
# Trace term
trace_term = (cov2_inv @ cov1).diagonal(dim2=-2, dim1=-1).sum(1)
# Log determinant term
det_cov1 = torch.det(cov1)
det_cov2 = torch.det(cov2)
log_term = torch.log(det_cov2 / det_cov1).nan_to_num(nan=0.0)
if shape_only:
displacement_term = 0
else:
# Mean difference term
displacement_term = (
((m1 - m2).transpose(-1, -2) @ cov2_inv @ (m1 - m2)).squeeze().abs()
)
return 0.5 * (trace_term + displacement_term - 2 + log_term)
def symmetric_kl_divergence(
A1: torch.Tensor,
A2: torch.Tensor,
*,
shape_only: bool = False,
nan_to_num: float = float(1e4),
normalize: bool = False,
) -> torch.Tensor:
"""
Compute symmetric KL divergence between ellipses.
"""
kl_12 = torch.nan_to_num(
mv_kullback_leibler_divergence(A1, A2, shape_only=shape_only), nan_to_num
)
kl_21 = torch.nan_to_num(
mv_kullback_leibler_divergence(A2, A1, shape_only=shape_only), nan_to_num
)
kl = (kl_12 + kl_21) / 2
if kl.lt(0).any():
raise ValueError("Negative KL divergence encountered.")
if normalize:
kl = 1 - torch.exp(-kl)
return kl
class SymmetricKLDLoss(torch.nn.Module):
"""
Computes the symmetric Kullback-Leibler divergence (KLD) loss between two tensors.
SymmetricKLDLoss is used for measuring the divergence between two probability
distributions or tensors, which can be useful in tasks such as generative modeling
or optimization. The function allows for options such as normalizing the tensors or
focusing only on their shape for comparison. Additionally, it includes a feature
to handle NaN values by replacing them with a numeric constant.
Attributes
----------
shape_only : bool
If True, computes the divergence based on the shape of the tensors only. This
can be used to evaluate similarity without considering magnitude differences.
nan_to_num : float
The value to replace NaN entries in the tensors with. Helps maintain numerical
stability in cases where the input tensors contain undefined or invalid values.
normalize : bool
If True, normalizes the tensors before computing the divergence. This is
typically used when the inputs are not already probability distributions.
"""
def __init__(
self, shape_only: bool = True, nan_to_num: float = 10.0, normalize: bool = False
):
super().__init__()
self.shape_only = shape_only
self.nan_to_num = nan_to_num
self.normalize = normalize
def forward(self, A1: torch.Tensor, A2: torch.Tensor) -> torch.Tensor:
return symmetric_kl_divergence(
A1,
A2,
shape_only=self.shape_only,
nan_to_num=self.nan_to_num,
normalize=self.normalize,
)