Spaces:
Running
Running
File size: 8,771 Bytes
81bcfbe 7d636df 81bcfbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import pandas as pd
import gradio as gr
from collections import defaultdict
def parse_excel(file_path):
xls = pd.ExcelFile(file_path)
task_data = defaultdict(lambda: defaultdict(dict))
all_models = set()
all_datasets = defaultdict(set)
model_urls = {} # εε¨ζ¨‘εURL
for sheet_name in xls.sheet_names:
if '_' not in sheet_name:
continue
task_name, lang = sheet_name.rsplit('_', 1)
if lang not in ['en', 'zh']:
continue
df = xls.parse(sheet_name)
has_url = 'URL' in df.columns
urls = df['URL'].tolist() if has_url else [None] * len(df)
models = df.iloc[:, 0].tolist()
datasets = [col for col in df.columns[1:] if col != 'URL'] if has_url else df.columns[1:].tolist()
for model, url in zip(models, urls):
if url and pd.notnull(url):
model_urls[model] = url
all_models.update(models)
all_datasets[task_name].update([(d, lang) for d in datasets])
for idx, row in df.iterrows():
model = row.iloc[0]
scores = row[datasets].tolist() if datasets else []
task_data[task_name][lang][model] = dict(zip(datasets, scores))
return task_data, sorted(all_models), dict(all_datasets), model_urls
def calculate_averages(task_data, all_models):
lang_overall_avg = defaultdict(lambda: defaultdict(list))
task_lang_avg = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for task, langs in task_data.items():
for lang, models in langs.items():
for model in all_models:
if model in models:
scores = list(models[model].values())
lang_overall_avg[lang][model].extend(scores)
task_lang_avg[task][lang][model].extend(scores)
overall = {
lang: {
model: sum(scores)/len(scores) if scores else 0.0
for model, scores in models.items()
}
for lang, models in lang_overall_avg.items()
}
processed_task_avg = defaultdict(dict)
for task, langs in task_lang_avg.items():
for lang, models in langs.items():
processed_task_avg[task][lang] = {
model: sum(scores)/len(scores) if scores else 0.0
for model, scores in models.items()
}
return overall, processed_task_avg
def filter_models(search_term):
if not search_term:
return all_models
return [m for m in all_models if search_term.lower() in m.lower()]
def create_lang_view(lang, models):
model_links = [
f'<a href="{model_urls.get(m, "#")}" target="_blank">{m}</a>'
if model_urls.get(m) else m
for m in models
]
df_data = {
"Model": model_links,
f"Overall ({lang.upper()})": [
round(overall_avg[lang].get(m, 0), 3)
for m in models
]
}
for task in sorted(task_avg.keys()):
task_scores = []
for m in models:
score = task_avg[task].get(lang, {}).get(m, 0)
task_scores.append(round(score, 3))
df_data[task] = task_scores
df = pd.DataFrame(df_data)
if not df.empty:
numeric_cols = df.columns[df.columns != "Model"]
df = df[~(df[numeric_cols] == 0).all(axis=1)]
df = df.sort_values(by=f"Overall ({lang.upper()})", ascending=False)
df.reset_index(drop=True, inplace=True)
return df if not df.empty else pd.DataFrame({"Status": [f"No {lang.upper()} data matching criteria..."]})
def create_overall_view(search_term=None):
filtered_models = filter_models(search_term)
en_df = create_lang_view('en', filtered_models)
zh_df = create_lang_view('zh', filtered_models)
return en_df, zh_df
def create_task_view(task_name, search_term=None):
task_langs = task_data.get(task_name, {})
dfs = []
filtered_models = filter_models(search_term)
model_links = [
f'<a href="{model_urls.get(m, "#")}" target="_blank">{m}</a>'
if model_urls.get(m) else m
for m in filtered_models
]
for lang in ['en', 'zh']:
lang_data = task_langs.get(lang, {})
datasets = []
if lang_data:
models_in_lang = list(lang_data.keys())
if models_in_lang:
datasets = sorted(lang_data[models_in_lang[0]].keys())
df = pd.DataFrame(columns=["Model", "Avg."] + datasets)
for i, model in enumerate(filtered_models):
row_data = {"Model": model_links[i]}
scores = []
if model in lang_data:
for ds in datasets:
score = lang_data[model].get(ds, 0.0)
row_data[ds] = round(score, 3)
scores.append(score)
row_data["Avg."] = round(sum(scores)/len(scores) if scores else 0.0, 3)
else:
row_data.update({ds: 0.0 for ds in datasets})
row_data["Avg."] = 0.0
df = pd.concat([df, pd.DataFrame([row_data])], ignore_index=True)
if datasets:
df = df[["Model", "Avg."] + datasets]
numeric_cols = df.columns[df.columns != "Model"]
if not numeric_cols.empty:
df = df[~(df[numeric_cols] == 0).all(axis=1)]
df = df.sort_values(by="Avg.", ascending=False)
df.reset_index(drop=True, inplace=True)
else:
df = pd.DataFrame({"Status": ["There is no data for this language.."]})
dfs.append(df)
return dfs
task_data, all_models, all_datasets, model_urls = parse_excel('benchmark.xlsx')
overall_avg, task_avg = calculate_averages(task_data, all_models)
with gr.Blocks(title="Benchmark Leaderboard", css=""".search-box {margin-bottom: 20px}
.gradio-container {max-width: 100% !important}
.dataframe {width: 100% !important}""") as demo:
gr.Markdown("# π° FinMTEB Benchmark Leaderboard")
gr.Markdown("**Finance** Massive Text Embedding Benchmark (FinMTEB), an embedding benchmark consists of 64 financial domain-specific text datasets, across English and Chinese, spanning seven different tasks.")
gr.Markdown("---")
gr.Markdown("π If you feel our work helpful, please cite the following paper: [FinMTEB: Finance Massive Text Embedding Benchmark](https://arxiv.org/abs/2502.10990)")
gr.Markdown("Github: [FinMTEB](https://github.com/yixuantt/FinMTEB/blob/main/README.md)")
search = gr.Textbox(
placeholder="π Enter the model name...",
label="model_search",
show_label=False,
elem_classes=["search-box"]
)
with gr.Tabs() as main_tabs:
with gr.Tab("π Overview"):
with gr.Column(elem_classes=["lang-section"]):
gr.Markdown("### English Datasets")
en_table = gr.DataFrame(interactive=False,datatype=["markdown", "markdown", "html"])
with gr.Column(elem_classes=["lang-section"]):
gr.Markdown("### Chinese Datasets")
zh_table = gr.DataFrame(interactive=False,datatype=["markdown", "markdown", "html"])
search.change(
create_overall_view,
inputs=search,
outputs=[en_table, zh_table]
)
demo.load(
lambda: create_overall_view(),
outputs=[en_table, zh_table]
)
for task_name in task_data:
with gr.Tab(task_name):
with gr.Column():
gr.Markdown("### English Datasets")
en_display = gr.DataFrame(interactive=False,datatype=["markdown", "markdown", "html"])
with gr.Column():
gr.Markdown("### Chinese Datasets")
zh_display = gr.DataFrame(interactive=False,datatype=["markdown", "markdown", "html"])
search.change(
lambda term, tn=task_name: create_task_view(tn, term),
inputs=search,
outputs=[en_display, zh_display]
)
demo.load(
lambda tn=task_name: create_task_view(tn),
outputs=[en_display, zh_display]
)
with gr.Tab("π¬ Submit"):
gr.Markdown("---")
gr.Markdown("For the results report, please send the results to **[email protected]**")
gr.Markdown("π Thanks for your contribution!")
if __name__ == "__main__":
demo.launch() |