|
import os |
|
from huggingface_hub import login |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
|
|
|
|
|
|
|
|
hf_token = os.getenv('HF_AUTH_TOKEN') |
|
if not hf_token: |
|
raise ValueError("Hugging Face token is not set in the environment variables.") |
|
login(token=hf_token) |
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
import gradio as gr |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import spaces |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") |
|
st.title("Image Caption Generator") |
|
st.write("Upload an image or provide an image URL to generate its caption.") |
|
|
|
|
|
img_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) |
|
if img_file is not None: |
|
raw_image = Image.open(img_file).convert('RGB') |
|
text = "a photography of" |
|
inputs = processor(raw_image, text, return_tensors="pt", padding =True, truncation=True, max_length =250) |
|
out = model.generate(**inputs) |
|
caption = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
@spaces.GPU(duration=300) |
|
def generate_image(prompt): |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe.to(device) |
|
image = pipe(prompt).images[0] |
|
return image |
|
|
|
|
|
iface = gr.Interface(fn=generate_image, |
|
inputs=caption, |
|
outputs=gr.Image(label="Generated Image"), |
|
title="Astronaut in a Jungle Model") |
|
|
|
|
|
iface.launch(share=True) |
|
|
|
|