Update app.py
Browse files
app.py
CHANGED
@@ -2,13 +2,15 @@ import os
|
|
2 |
from huggingface_hub import login
|
3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import gradio as gr
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import torch
|
9 |
import spaces # Hugging Face Spaces module
|
10 |
|
11 |
-
from transformers import
|
|
|
|
|
12 |
|
13 |
|
14 |
|
@@ -22,15 +24,15 @@ login(token=hf_token)
|
|
22 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
23 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
24 |
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
|
29 |
-
# Initialize the model
|
30 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
pipe.to(device)
|
33 |
-
|
34 |
model.to(device)
|
35 |
|
36 |
|
@@ -41,6 +43,7 @@ def generate_caption_and_image(image):
|
|
41 |
# reader = easyocr.Reader(['en'])
|
42 |
# result = reader.readtext(img)
|
43 |
import random
|
|
|
44 |
|
45 |
# Define lists for the three variables
|
46 |
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet']
|
@@ -54,15 +57,18 @@ def generate_caption_and_image(image):
|
|
54 |
|
55 |
|
56 |
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
# Generate caption
|
61 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
62 |
inputs = {key: val.to(device) for key, val in inputs.items()}
|
63 |
out = model.generate(**inputs)
|
64 |
-
|
65 |
-
|
66 |
prompt = f'''Create a highly realistic clothing item based on the following descriptions: The design should reflect {caption1} and {caption2}, blending both themes into a single, stylish, and modern piece of clothing. Incorporate highly realistic and high-quality textures that exude sophistication, with realistic fabric lighting and fine details. Subtly hint at {selected_fabric}, featuring a {selected_pattern} motif and a {selected_textile_design} style that harmoniously balances the essence of both captions.'''
|
67 |
|
68 |
|
|
|
2 |
from huggingface_hub import login
|
3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
+
|
6 |
import gradio as gr
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import torch
|
9 |
import spaces # Hugging Face Spaces module
|
10 |
|
11 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
12 |
+
|
13 |
+
|
14 |
|
15 |
|
16 |
|
|
|
24 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
25 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
26 |
|
27 |
+
model2 = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
28 |
+
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
30 |
|
31 |
|
|
|
32 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
pipe.to(device)
|
35 |
+
model2.to(device)
|
36 |
model.to(device)
|
37 |
|
38 |
|
|
|
43 |
# reader = easyocr.Reader(['en'])
|
44 |
# result = reader.readtext(img)
|
45 |
import random
|
46 |
+
|
47 |
|
48 |
# Define lists for the three variables
|
49 |
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet']
|
|
|
57 |
|
58 |
|
59 |
|
60 |
+
pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values.to(device)
|
61 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
62 |
+
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
|
63 |
+
|
64 |
|
65 |
|
66 |
# Generate caption
|
67 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
68 |
inputs = {key: val.to(device) for key, val in inputs.items()}
|
69 |
out = model.generate(**inputs)
|
70 |
+
caption2 = processor.decode(out[0], skip_special_tokens=True)
|
71 |
+
|
72 |
prompt = f'''Create a highly realistic clothing item based on the following descriptions: The design should reflect {caption1} and {caption2}, blending both themes into a single, stylish, and modern piece of clothing. Incorporate highly realistic and high-quality textures that exude sophistication, with realistic fabric lighting and fine details. Subtly hint at {selected_fabric}, featuring a {selected_pattern} motif and a {selected_textile_design} style that harmoniously balances the essence of both captions.'''
|
73 |
|
74 |
|