Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,22 @@ from diffusers import DiffusionPipeline
|
|
8 |
import torch
|
9 |
import spaces # Hugging Face Spaces module
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
|
@@ -22,13 +38,14 @@ login(token=hf_token)
|
|
22 |
# Load the processor and model
|
23 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
24 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
-
|
28 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
pipe.to(device)
|
31 |
-
|
32 |
model.to(device)
|
33 |
|
34 |
|
@@ -50,9 +67,14 @@ def generate_caption_and_image(image):
|
|
50 |
selected_fabric = random.choice(fabrics)
|
51 |
selected_pattern = random.choice(patterns)
|
52 |
selected_textile_design = random.choice(textile_designs)
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
caption2 =""
|
56 |
|
57 |
# Generate caption
|
58 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
|
|
8 |
import torch
|
9 |
import spaces # Hugging Face Spaces module
|
10 |
|
11 |
+
import requests
|
12 |
+
|
13 |
+
|
14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
|
16 |
+
|
17 |
+
img_url = 'https://huggingface.co/spaces/noamrot/FuseCap/resolve/main/bike.jpg'
|
18 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
19 |
+
|
20 |
+
text = "a picture of "
|
21 |
+
inputs = processor(raw_image, text, return_tensors="pt").to(device)
|
22 |
+
|
23 |
+
out = model.generate(**inputs, num_beams = 3)
|
24 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
25 |
+
|
26 |
+
|
27 |
|
28 |
|
29 |
|
|
|
38 |
# Load the processor and model
|
39 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
40 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
41 |
+
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
42 |
+
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
43 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
44 |
|
45 |
|
|
|
|
|
46 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
47 |
pipe.to(device)
|
48 |
+
model2.to(device)
|
49 |
model.to(device)
|
50 |
|
51 |
|
|
|
67 |
selected_fabric = random.choice(fabrics)
|
68 |
selected_pattern = random.choice(patterns)
|
69 |
selected_textile_design = random.choice(textile_designs)
|
70 |
+
text = "a picture of "
|
71 |
+
inputs = processor(img, text, return_tensors="pt").to(device)
|
72 |
+
|
73 |
+
out = model.generate(**inputs, num_beams = 3)
|
74 |
+
|
75 |
+
|
76 |
|
77 |
+
caption2 = processor.decode(out[0], skip_special_tokens=True)
|
|
|
78 |
|
79 |
# Generate caption
|
80 |
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|