Fiqa commited on
Commit
3891dec
·
verified ·
1 Parent(s): 6c3b8ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -4,6 +4,8 @@ from transformers import BlipProcessor, BlipForConditionalGeneration
4
  from PIL import Image
5
  import easyocr
6
 
 
 
7
 
8
 
9
  # Get Hugging Face Token from environment variable
@@ -15,6 +17,9 @@ login(token=hf_token)
15
  # Load the processor and model
16
  processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
17
  model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
 
 
 
18
  import gradio as gr
19
  from diffusers import DiffusionPipeline
20
  import torch
@@ -24,6 +29,7 @@ import spaces # Hugging Face Spaces module
24
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
25
  device = "cuda" if torch.cuda.is_available() else "cpu"
26
  pipe.to(device)
 
27
  model.to(device)
28
 
29
 
@@ -55,7 +61,8 @@ def generate_caption_and_image(image):
55
  inputs = {key: val.to(device) for key, val in inputs.items()}
56
  out = model.generate(**inputs)
57
  caption = processor.decode(out[0], skip_special_tokens=True)
58
- prompt = f'''Create a highly realistic clothing item based on the following description: The design should reflect {caption}, featuring a highly realistic and modern piece of clothing that incorporates stylish and high-quality textures, exuding sophistication with realistic fabric lighting and fine details, subtly hinting at {selected_fabric}, with a {selected_pattern} motif and a {selected_textile_design} style.'''
 
59
 
60
 
61
 
 
4
  from PIL import Image
5
  import easyocr
6
 
7
+ from transformers import pipeline
8
+
9
 
10
 
11
  # Get Hugging Face Token from environment variable
 
17
  # Load the processor and model
18
  processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
19
  model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
20
+
21
+
22
+ pipe2= pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
23
  import gradio as gr
24
  from diffusers import DiffusionPipeline
25
  import torch
 
29
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
30
  device = "cuda" if torch.cuda.is_available() else "cpu"
31
  pipe.to(device)
32
+ pipe2.to(device)
33
  model.to(device)
34
 
35
 
 
61
  inputs = {key: val.to(device) for key, val in inputs.items()}
62
  out = model.generate(**inputs)
63
  caption = processor.decode(out[0], skip_special_tokens=True)
64
+ caption2 =pipe2(img)
65
+ prompt = '''f'''Create a highly realistic clothing item based on the following descriptions: The design should reflect {caption1} and {caption2}, blending both themes into a single, stylish, and modern piece of clothing. Incorporate highly realistic and high-quality textures that exude sophistication, with realistic fabric lighting and fine details. Subtly hint at {selected_fabric}, featuring a {selected_pattern} motif and a {selected_textile_design} style that harmoniously balances the essence of both captions.''''''
66
 
67
 
68