Update app.py
Browse files
app.py
CHANGED
@@ -34,21 +34,12 @@ login(token =HUGGINGFACE_TOKEN)
|
|
34 |
|
35 |
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
model =
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
)
|
44 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
45 |
-
|
46 |
-
# Load the processor and model
|
47 |
-
# processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
48 |
-
# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
49 |
-
# processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
50 |
-
# model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
51 |
-
# pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
52 |
from diffusers import FluxPipeline
|
53 |
|
54 |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
@@ -61,6 +52,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
61 |
|
62 |
model.to(device)
|
63 |
pipe.to(device)
|
|
|
64 |
|
65 |
|
66 |
|
@@ -79,22 +71,22 @@ def generate_caption_and_image(image, f, p, d):
|
|
79 |
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
|
87 |
|
88 |
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
|
100 |
|
@@ -102,20 +94,8 @@ def generate_caption_and_image(image, f, p, d):
|
|
102 |
|
103 |
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
# # Generate image based on the caption
|
108 |
-
# generated_image = pipe(prompt).images[0]
|
109 |
-
# generated_image1 =pipe(prompt).images[0]
|
110 |
-
|
111 |
-
# return generated_image, generated_image1
|
112 |
-
messages = [{"role": "user", "content": [{"type": "image"},{"type": "text", "text": "If I had to write a haiku for this one, it would be: "}]}]
|
113 |
-
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
114 |
-
inputs = processor(img,input_text,add_special_tokens=False,return_tensors="pt").to(device)
|
115 |
-
|
116 |
-
output = model.generate(**inputs, max_new_tokens=30)
|
117 |
-
caption =processor.decode(output[0])
|
118 |
-
image = pipe(caption,height=1024,width=1024,guidance_scale=3.5,num_inference_steps=50,max_sequence_length=512,generator=torch.Generator("cpu").manual_seed(0)).images[0]
|
119 |
return image
|
120 |
return None
|
121 |
# Gradio UI
|
|
|
34 |
|
35 |
|
36 |
|
37 |
+
Load the processor and model
|
38 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
39 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
40 |
+
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
41 |
+
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
42 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
from diffusers import FluxPipeline
|
44 |
|
45 |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
|
|
52 |
|
53 |
model.to(device)
|
54 |
pipe.to(device)
|
55 |
+
model2.to(device)
|
56 |
|
57 |
|
58 |
|
|
|
71 |
|
72 |
|
73 |
|
74 |
+
text = "a picture of "
|
75 |
+
inputs = processor(img, text, return_tensors="pt").to(device)
|
76 |
|
77 |
+
out = model2.generate(**inputs, num_beams = 3)
|
78 |
|
79 |
|
80 |
|
81 |
+
caption2 = processor.decode(out[0], skip_special_tokens=True)
|
82 |
|
83 |
+
Generate caption
|
84 |
+
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
|
85 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
86 |
+
out = model.generate(**inputs)
|
87 |
+
caption1 = processor.decode(out[0], skip_special_tokens=True)
|
88 |
|
89 |
+
prompt = f"Design a high-quality, stylish clothing item that seamlessly blends the essence of {caption1} and {caption2}. The design should prominently feature {f}{d} and incorporate {p}. The final piece should exude sophistication and creativity, suitable for modern trends while retaining an element of timeless appeal. Ensure the textures and patterns complement each other harmoniously, creating a visually striking yet wearable garment."
|
90 |
|
91 |
|
92 |
|
|
|
94 |
|
95 |
|
96 |
|
97 |
+
|
98 |
+
image = pipe(prompt,height=1024,width=1024,guidance_scale=3.5,num_inference_steps=50,max_sequence_length=512,generator=torch.Generator("cpu").manual_seed(0)).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
return image
|
100 |
return None
|
101 |
# Gradio UI
|