Update app.py
Browse files
app.py
CHANGED
@@ -35,14 +35,8 @@ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-larg
|
|
35 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
36 |
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
37 |
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
38 |
-
|
39 |
-
# model3 =model = Qwen2VLForConditionalGeneration.from_pretrained(
|
40 |
-
# "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", torch_dtype="auto", device_map="auto"
|
41 |
-
# )
|
42 |
-
# processor2 = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct")
|
43 |
|
44 |
-
pipe3 = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
45 |
-
pipe3.load_lora_weights("tryonlabs/FLUX.1-dev-LoRA-Outfit-Generator")
|
46 |
|
47 |
|
48 |
|
@@ -51,7 +45,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
51 |
# pipe.to(device)
|
52 |
model2.to(device)
|
53 |
model.to(device)
|
54 |
-
|
55 |
|
56 |
|
57 |
|
@@ -61,28 +55,6 @@ def generate_caption_and_image(image):
|
|
61 |
# reader = easyocr.Reader(['en'])
|
62 |
# # result = reader.readtext(img)
|
63 |
import random
|
64 |
-
# messages = [{"role": "user", "content": [{"type": "image", "image": img}, {"type": "text", "text": "Describe this Image"}]}]
|
65 |
-
|
66 |
-
# text = processor.apply_chat_template(
|
67 |
-
# messages, tokenize=False, add_generation_prompt=True
|
68 |
-
# )
|
69 |
-
# image_inputs, video_inputs = process_vision_info(messages)
|
70 |
-
# inputs = processor(
|
71 |
-
# text=[text],
|
72 |
-
# images=image_inputs,
|
73 |
-
# videos=video_inputs,
|
74 |
-
# padding=True,
|
75 |
-
# return_tensors="pt",
|
76 |
-
# )
|
77 |
-
# inputs = inputs.to(device)
|
78 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=128)
|
79 |
-
# generated_ids_trimmed = [
|
80 |
-
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
81 |
-
# ]
|
82 |
-
# result = processor.batch_decode(
|
83 |
-
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
84 |
-
# )
|
85 |
-
|
86 |
|
87 |
|
88 |
|
@@ -99,7 +71,7 @@ def generate_caption_and_image(image):
|
|
99 |
text = "a picture of "
|
100 |
inputs = processor(img, text, return_tensors="pt").to(device)
|
101 |
|
102 |
-
out =
|
103 |
|
104 |
|
105 |
|
@@ -116,7 +88,7 @@ def generate_caption_and_image(image):
|
|
116 |
|
117 |
|
118 |
# Generate image based on the caption
|
119 |
-
generated_image =
|
120 |
|
121 |
return prompt, generated_image
|
122 |
|
|
|
35 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
36 |
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
37 |
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap")
|
38 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium")
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
40 |
|
41 |
|
42 |
|
|
|
45 |
# pipe.to(device)
|
46 |
model2.to(device)
|
47 |
model.to(device)
|
48 |
+
pip.to(device)
|
49 |
|
50 |
|
51 |
|
|
|
55 |
# reader = easyocr.Reader(['en'])
|
56 |
# # result = reader.readtext(img)
|
57 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
|
|
|
71 |
text = "a picture of "
|
72 |
inputs = processor(img, text, return_tensors="pt").to(device)
|
73 |
|
74 |
+
out = model2.generate(**inputs, num_beams = 3)
|
75 |
|
76 |
|
77 |
|
|
|
88 |
|
89 |
|
90 |
# Generate image based on the caption
|
91 |
+
generated_image = pipe(prompt).images[0]
|
92 |
|
93 |
return prompt, generated_image
|
94 |
|