Fiqa commited on
Commit
eb4cf9a
·
verified ·
1 Parent(s): febdafe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -34
app.py CHANGED
@@ -52,45 +52,46 @@ pipe.to(device)
52
 
53
  @spaces.GPU(duration=150)
54
  def generate_caption_and_image(image, f, p, d):
55
- img = image.convert("RGB")
56
- # reader = easyocr.Reader(['en'])
57
- # # result = reader.readtext(img)
58
- import random
 
 
59
 
60
-
61
-
62
-
63
-
 
 
 
 
 
 
 
64
 
65
-
66
-
67
- text = "a picture of "
68
- inputs = processor(img, text, return_tensors="pt").to(device)
69
 
70
- out = model2.generate(**inputs, num_beams = 3)
71
-
 
 
 
 
 
72
 
73
-
74
- caption2 = processor.decode(out[0], skip_special_tokens=True)
75
 
76
- # Generate caption
77
- inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
78
- inputs = {key: val.to(device) for key, val in inputs.items()}
79
- out = model.generate(**inputs)
80
- caption1 = processor.decode(out[0], skip_special_tokens=True)
81
-
82
- prompt = f"Generate a clothing item using the following details: 1. {caption1} 2. {caption2} 3. Fabric: {selected_fabric} 4. Pattern: {selected_pattern} 5. Design Style: {selected_textile_design}. "
83
-
84
-
85
- prompt +="The image should have a clean, minimalistic grey or white background, with realistic lighting and fine details, ensuring a sophisticated and polished appearance"
86
-
87
-
88
-
89
-
90
- # Generate image based on the caption
91
- generated_image = pipe(prompt).images[0]
92
-
93
- return prompt, generated_image
94
 
95
  # Gradio UI
96
  iface = gr.Interface(
 
52
 
53
  @spaces.GPU(duration=150)
54
  def generate_caption_and_image(image, f, p, d):
55
+ if f and p and d:
56
+ img = image.convert("RGB")
57
+ # reader = easyocr.Reader(['en'])
58
+ # # result = reader.readtext(img)
59
+ import random
60
+
61
 
62
+
63
+
64
+
65
+
66
+
67
+
68
+ text = "a picture of "
69
+ inputs = processor(img, text, return_tensors="pt").to(device)
70
+
71
+ out = model2.generate(**inputs, num_beams = 3)
72
+
73
 
 
 
 
 
74
 
75
+ caption2 = processor.decode(out[0], skip_special_tokens=True)
76
+
77
+ # Generate caption
78
+ inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250)
79
+ inputs = {key: val.to(device) for key, val in inputs.items()}
80
+ out = model.generate(**inputs)
81
+ caption1 = processor.decode(out[0], skip_special_tokens=True)
82
 
83
+ prompt = f"Generate a clothing item using the following details: 1. {caption1} 2. {caption2} 3. Fabric: {f} 4. Pattern: {p} 5. Design Style: {d}. "
 
84
 
85
+
86
+ prompt +="The image should have a clean, minimalistic grey or white background, with realistic lighting and fine details, ensuring a sophisticated and polished appearance"
87
+
88
+
89
+
90
+
91
+ # Generate image based on the caption
92
+ generated_image = pipe(prompt).images[0]
93
+
94
+ return prompt, generated_image
 
 
 
 
 
 
 
 
95
 
96
  # Gradio UI
97
  iface = gr.Interface(