import os from huggingface_hub import login from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image import gradio as gr from diffusers import DiffusionPipeline import torch import spaces # Hugging Face Spaces module import requests from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from diffusers import DiffusionPipeline fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet'] patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots'] textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting'] # Get Hugging Face Token from environment variable hf_token = os.getenv('HF_AUTH_TOKEN') if not hf_token: raise ValueError("Hugging Face token is not set in the environment variables.") login(token=hf_token) # Load the processor and model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap") model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap") pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") device = "cuda" if torch.cuda.is_available() else "cpu" # pipe.to(device) model2.to(device) model.to(device) pipe.to(device) @spaces.GPU(duration=150) def generate_caption_and_image(image, f, p, d): if f!=None and p!=None and d!=None and image!=None: img = image.convert("RGB") # reader = easyocr.Reader(['en']) # # result = reader.readtext(img) import random text = "a picture of " inputs = processor(img, text, return_tensors="pt").to(device) out = model2.generate(**inputs, num_beams = 3) caption2 = processor.decode(out[0], skip_special_tokens=True) # Generate caption inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250) inputs = {key: val.to(device) for key, val in inputs.items()} out = model.generate(**inputs) caption1 = processor.decode(out[0], skip_special_tokens=True) prompt = (f"Create a visually stunning clothing item inspired by: 1. Primary Context: {caption1}, describing the mood and thematic elements of the image. 2. Secondary Insights: {caption2}, providing complementary attributes and textures. 3. Fabric: '{f}', highlighting its qualities. 4. Pattern: '{p}', enhancing visual harmony. 5. Design Style: '{d}', for a refined finish. Use a clean grey/white background with realistic lighting and intricate details for a polished presentation.") # Generate image based on the caption generated_image = pipe(prompt).images[0] generated_image1 =pipe(prompt).images[0] return generated_image, generated_image1 # Gradio UI iface = gr.Interface( fn=generate_caption_and_image, inputs=[gr.Image(type="pil", label="Upload Image"), gr.Radio(fabrics, label="Select Fabric"), gr.Radio(patterns, label="Select Pattern"), gr.Radio(textile_designs, label="Select Textile Design")], outputs=[gr.Image(label="Generated Design 1"), gr.Image(label="Generated Design 2")], live=True ) iface.launch(share=True)