import os from huggingface_hub import login from transformers import BlipProcessor, BlipForConditionalGeneration # Get Hugging Face Token from environment variable hf_token = os.getenv('HF_AUTH_TOKEN') if not hf_token: raise ValueError("Hugging Face token is not set in the environment variables.") login(token=hf_token) # Load the processor and model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") import gradio as gr from diffusers import DiffusionPipeline import torch import spaces # Hugging Face Spaces module # Initialize the model pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") @spaces.GPU(duration=300) def generate_caption_and_image(image): # Process the image raw_image = image.convert("RGB") # Generate caption inputs = processor(raw_image, return_tensors="pt", padding=True, truncation=True, max_length=250) inputs = {key: val.to(device) for key, val in inputs.items()} out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) # Generate image based on the caption generated_image = pipe(caption).images[0] return caption, generated_image # Gradio UI iface = gr.Interface( fn=generate_caption_and_image, inputs=gr.Image(type="pil", label="Upload Image"), outputs=[gr.Textbox(label="Generated Caption"), gr.Image(label="Generated Design")], live=True )