import os from huggingface_hub import login from transformers import BlipProcessor, BlipForConditionalGeneration # Get Hugging Face Token from environment variable hf_token = os.getenv('HF_AUTH_TOKEN') if not hf_token: raise ValueError("Hugging Face token is not set in the environment variables.") login(token=hf_token) # Load the processor and model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") import gradio as gr from diffusers import DiffusionPipeline import torch import spaces # Hugging Face Spaces module # Initialize the model pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") st.title("Image Caption Generator") st.write("Upload an image or provide an image URL to generate its caption.") # Option for image upload img_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) if img_file is not None: raw_image = Image.open(img_file).convert('RGB') text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt", padding =True, truncation=True, max_length =250) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) @spaces.GPU(duration=300) def generate_image(prompt): # Move the model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" pipe.to(device) image = pipe(prompt).images[0] return image # Create the Gradio interface iface = gr.Interface(fn=generate_image, inputs=caption, outputs=gr.Image(label="Generated Image"), title="Astronaut in a Jungle Model") # Launch the interface iface.launch(share=True)