File size: 29,264 Bytes
37ced70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import typing as tp
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from fireredtts.modules.flow.utils import make_pad_mask


class MultiHeadedAttention(nn.Module):
    """Multi-Head Attention layer.

    Args:
        n_head (int): The number of heads.
        n_feat (int): The number of features.
        dropout_rate (float): Dropout rate.

    """

    def __init__(self,
                 n_head: int,
                 n_feat: int,
                 dropout_rate: float,
                 key_bias: bool = True):
        """Construct an MultiHeadedAttention object."""
        super().__init__()
        assert n_feat % n_head == 0
        # We assume d_v always equals d_k
        self.d_k = n_feat // n_head
        self.h = n_head
        self.linear_q = nn.Linear(n_feat, n_feat)
        self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
        self.linear_v = nn.Linear(n_feat, n_feat)
        self.linear_out = nn.Linear(n_feat, n_feat)
        self.dropout = nn.Dropout(p=dropout_rate)

    def forward_qkv(
        self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
    ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Transform query, key and value.

        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).

        Returns:
            torch.Tensor: Transformed query tensor, size
                (#batch, n_head, time1, d_k).
            torch.Tensor: Transformed key tensor, size
                (#batch, n_head, time2, d_k).
            torch.Tensor: Transformed value tensor, size
                (#batch, n_head, time2, d_k).

        """
        n_batch = query.size(0)
        q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
        k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
        v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
        q = q.transpose(1, 2)  # (batch, head, time1, d_k)
        k = k.transpose(1, 2)  # (batch, head, time2, d_k)
        v = v.transpose(1, 2)  # (batch, head, time2, d_k)

        return q, k, v

    def forward_attention(
        self,
        value: torch.Tensor,
        scores: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
    ) -> torch.Tensor:
        """Compute attention context vector.

        Args:
            value (torch.Tensor): Transformed value, size
                (#batch, n_head, time2, d_k).
            scores (torch.Tensor): Attention score, size
                (#batch, n_head, time1, time2).
            mask (torch.Tensor): Mask, size (#batch, 1, time2) or
                (#batch, time1, time2), (0, 0, 0) means fake mask.

        Returns:
            torch.Tensor: Transformed value (#batch, time1, d_model)
                weighted by the attention score (#batch, time1, time2).

        """
        n_batch = value.size(0)
        # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
        #   1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
        #           1st chunk to ease the onnx export.]
        #   2. pytorch training
        if mask.size(2) > 0:  # time2 > 0
            mask = mask.unsqueeze(1).eq(0)  # (batch, 1, *, time2)
            # For last chunk, time2 might be larger than scores.size(-1)
            mask = mask[:, :, :, :scores.size(-1)]  # (batch, 1, *, time2)
            scores = scores.masked_fill(mask, -float('inf'))
            attn = torch.softmax(scores, dim=-1).masked_fill(
                mask, 0.0)  # (batch, head, time1, time2)
        # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
        #   1. onnx(16/-1, -1/-1, 16/0)
        #   2. jit (16/-1, -1/-1, 16/0, 16/4)
        else:
            attn = torch.softmax(scores, dim=-1)  # (batch, head, time1, time2)

        p_attn = self.dropout(attn)
        x = torch.matmul(p_attn, value)  # (batch, head, time1, d_k)
        x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
                                                 self.h * self.d_k)
             )  # (batch, time1, d_model)

        return self.linear_out(x)  # (batch, time1, d_model)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        pos_emb: torch.Tensor = torch.empty(0),
        cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
    ) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Compute scaled dot product attention.

        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
            mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
                (#batch, time1, time2).
                1.When applying cross attention between decoder and encoder,
                the batch padding mask for input is in (#batch, 1, T) shape.
                2.When applying self attention of encoder,
                the mask is in (#batch, T, T)  shape.
            cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`


        Returns:
            torch.Tensor: Output tensor (#batch, time1, d_model).
            torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`

        """
        q, k, v = self.forward_qkv(query, key, value)

        # NOTE(xcsong):
        #   when export onnx model, for 1st chunk, we feed
        #       cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
        #       or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
        #       In all modes, `if cache.size(0) > 0` will alwayse be `True`
        #       and we will always do splitting and
        #       concatnation(this will simplify onnx export). Note that
        #       it's OK to concat & split zero-shaped tensors(see code below).
        #   when export jit  model, for 1st chunk, we always feed
        #       cache(0, 0, 0, 0) since jit supports dynamic if-branch.
        # >>> a = torch.ones((1, 2, 0, 4))
        # >>> b = torch.ones((1, 2, 3, 4))
        # >>> c = torch.cat((a, b), dim=2)
        # >>> torch.equal(b, c)        # True
        # >>> d = torch.split(a, 2, dim=-1)
        # >>> torch.equal(d[0], d[1])  # True
        if cache.size(0) > 0:
            key_cache, value_cache = torch.split(cache,
                                                 cache.size(-1) // 2,
                                                 dim=-1)
            k = torch.cat([key_cache, k], dim=2)
            v = torch.cat([value_cache, v], dim=2)
        # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
        #   non-trivial to calculate `next_cache_start` here.
        new_cache = torch.cat((k, v), dim=-1)

        scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
        return self.forward_attention(v, scores, mask), new_cache


class RelPositionMultiHeadedAttention(MultiHeadedAttention):
    """Multi-Head Attention layer with relative position encoding.
    Paper: https://arxiv.org/abs/1901.02860
    Args:
        n_head (int): The number of heads.
        n_feat (int): The number of features.
        dropout_rate (float): Dropout rate.
    """

    def __init__(self,
                 n_head: int,
                 n_feat: int,
                 dropout_rate: float,
                 key_bias: bool = True):
        """Construct an RelPositionMultiHeadedAttention object."""
        super().__init__(n_head, n_feat, dropout_rate, key_bias)
        # linear transformation for positional encoding
        self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
        # these two learnable bias are used in matrix c and matrix d
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
        self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
        torch.nn.init.xavier_uniform_(self.pos_bias_u)
        torch.nn.init.xavier_uniform_(self.pos_bias_v)

    def rel_shift(self, x):
        """Compute relative positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
            time1 means the length of query vector.

        Returns:
            torch.Tensor: Output tensor.

        """
        zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=-1)

        x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
        x = x_padded[:, :, 1:].view_as(x)[
            :, :, :, : x.size(-1) // 2 + 1
        ]  # only keep the positions from 0 to time2
        return x

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        pos_emb: torch.Tensor = torch.empty(0),
        cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
    ) -> tp.Tuple[torch.Tensor, torch.Tensor]:
        """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
            mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
                (#batch, time1, time2), (0, 0, 0) means fake mask.
            pos_emb (torch.Tensor): Positional embedding tensor
                (#batch, time2, size).
            cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`
        Returns:
            torch.Tensor: Output tensor (#batch, time1, d_model).
            torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
                where `cache_t == chunk_size * num_decoding_left_chunks`
                and `head * d_k == size`
        """
        q, k, v = self.forward_qkv(query, key, value)
        q = q.transpose(1, 2)  # (batch, time1, head, d_k)

        # NOTE(xcsong):
        #   when export onnx model, for 1st chunk, we feed
        #       cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
        #       or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
        #       In all modes, `if cache.size(0) > 0` will alwayse be `True`
        #       and we will always do splitting and
        #       concatnation(this will simplify onnx export). Note that
        #       it's OK to concat & split zero-shaped tensors(see code below).
        #   when export jit  model, for 1st chunk, we always feed
        #       cache(0, 0, 0, 0) since jit supports dynamic if-branch.
        # >>> a = torch.ones((1, 2, 0, 4))
        # >>> b = torch.ones((1, 2, 3, 4))
        # >>> c = torch.cat((a, b), dim=2)
        # >>> torch.equal(b, c)        # True
        # >>> d = torch.split(a, 2, dim=-1)
        # >>> torch.equal(d[0], d[1])  # True
        if cache.size(0) > 0:
            key_cache, value_cache = torch.split(cache,
                                                 cache.size(-1) // 2,
                                                 dim=-1)
            k = torch.cat([key_cache, k], dim=2)
            v = torch.cat([value_cache, v], dim=2)
        # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
        #   non-trivial to calculate `next_cache_start` here.
        new_cache = torch.cat((k, v), dim=-1)

        n_batch_pos = pos_emb.size(0)
        p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
        p = p.transpose(1, 2)  # (batch, head, time1, d_k)

        # (batch, head, time1, d_k)
        q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
        # (batch, head, time1, d_k)
        q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)

        # compute attention score
        # first compute matrix a and matrix c
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        # (batch, head, time1, time2)
        matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))

        # compute matrix b and matrix d
        # (batch, head, time1, time2)
        matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
        # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
        if matrix_ac.shape != matrix_bd.shape:
            matrix_bd = self.rel_shift(matrix_bd)

        scores = (matrix_ac + matrix_bd) / math.sqrt(
            self.d_k)  # (batch, head, time1, time2)

        return self.forward_attention(v, scores, mask), new_cache


class PositionwiseFeedForward(torch.nn.Module):
    """Positionwise feed forward layer.

    FeedForward are appied on each position of the sequence.
    The output dim is same with the input dim.

    Args:
        idim (int): Input dimenstion.
        hidden_units (int): The number of hidden units.
        dropout_rate (float): Dropout rate.
        activation (torch.nn.Module): Activation function
    """

    def __init__(
            self,
            idim: int,
            hidden_units: int,
            dropout_rate: float,
            activation: torch.nn.Module = torch.nn.ReLU(),
    ):
        """Construct a PositionwiseFeedForward object."""
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = torch.nn.Linear(idim, hidden_units)
        self.activation = activation
        self.dropout = torch.nn.Dropout(dropout_rate)
        self.w_2 = torch.nn.Linear(hidden_units, idim)

    def forward(self, xs: torch.Tensor) -> torch.Tensor:
        """Forward function.

        Args:
            xs: input tensor (B, L, D)
        Returns:
            output tensor, (B, L, D)
        """
        return self.w_2(self.dropout(self.activation(self.w_1(xs))))


class ConformerDecoderLayer(nn.Module):
    """Encoder layer module.
    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
            instance can be used as the argument.
        src_attn (torch.nn.Module): Cross-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention`
            instance can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        feed_forward_macaron (torch.nn.Module): Additional feed-forward module
             instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        conv_module (torch.nn.Module): Convolution module instance.
            `ConvlutionModule` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool):
            True: use layer_norm before each sub-block.
            False: use layer_norm after each sub-block.
    """

    def __init__(
        self,
        size: int,
        self_attn: torch.nn.Module,
        src_attn: tp.Optional[torch.nn.Module] = None,
        feed_forward: tp.Optional[nn.Module] = None,
        feed_forward_macaron: tp.Optional[nn.Module] = None,
        conv_module: tp.Optional[nn.Module] = None,
        dropout_rate: float = 0.1,
        normalize_before: bool = True,
    ):
        """Construct an EncoderLayer object."""
        super().__init__()
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.conv_module = conv_module
        self.norm_ff = nn.LayerNorm(size, eps=1e-5)  # for the FNN module
        self.norm_mha = nn.LayerNorm(size, eps=1e-5)  # for the MHA module
        if src_attn is not None:
            self.norm_mha2 = nn.LayerNorm(size, eps=1e-5)  # for the MHA module(src_attn)
        if feed_forward_macaron is not None:
            self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-5)
            self.ff_scale = 0.5
        else:
            self.ff_scale = 1.0
        if self.conv_module is not None:
            self.norm_conv = nn.LayerNorm(size, eps=1e-5)  # for the CNN module
            self.norm_final = nn.LayerNorm(
                size, eps=1e-5)  # for the final output of the block
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        # src-attention
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
    ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute encoded features.

        Args:
            x (torch.Tensor): (#batch, time, size)
            mask (torch.Tensor): Mask tensor for the input (#batch, time,time),
                (0, 0, 0) means fake mask.
            pos_emb (torch.Tensor): positional encoding, must not be None
                for ConformerEncoderLayer.
            mask_pad (torch.Tensor): batch padding mask used for conv module.
                (#batch, 1, time), (0, 0, 0) means fake mask.
            att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
                (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
            cnn_cache (torch.Tensor): Convolution cache in conformer layer
                (#batch=1, size, cache_t2)
        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time, time).
            torch.Tensor: att_cache tensor,
                (#batch=1, head, cache_t1 + time, d_k * 2).
            torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
        """

        # whether to use macaron style
        if self.feed_forward_macaron is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_ff_macaron(x)
            x = residual + self.ff_scale * self.dropout(
                self.feed_forward_macaron(x))
            if not self.normalize_before:
                x = self.norm_ff_macaron(x)

        # multi-headed self-attention module
        residual = x
        if self.normalize_before:
            x = self.norm_mha(x)
        x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb,
                                              att_cache)
        x = residual + self.dropout(x_att)
        if not self.normalize_before:
            x = self.norm_mha(x)
        
        # multi-headed cross-attention module
        if self.src_attn is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_mha2(x)
            x_att, _ = self.src_attn(x, memory, memory, memory_mask)
            x = residual + self.dropout(x_att)
            if not self.normalize_before:
                x = self.norm_mha2(x)

        # convolution module
        # Fake new cnn cache here, and then change it in conv_module
        new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
        if self.conv_module is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_conv(x)
            x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache)
            x = residual + self.dropout(x)

            if not self.normalize_before:
                x = self.norm_conv(x)

        # feed forward module
        residual = x
        if self.normalize_before:
            x = self.norm_ff(x)

        x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm_ff(x)

        if self.conv_module is not None:
            x = self.norm_final(x)

        return x, mask, new_att_cache, new_cnn_cache


class EspnetRelPositionalEncoding(torch.nn.Module):
    """Relative positional encoding module (new implementation).

    Details can be found in https://github.com/espnet/espnet/pull/2816.

    See : Appendix B in https://arxiv.org/abs/1901.02860

    Args:
        d_model (int): Embedding dimension.
        dropout_rate (float): Dropout rate.
        max_len (int): Maximum input length.

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Construct an PositionalEncoding object."""
        super(EspnetRelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            # self.pe contains both positive and negative parts
            # the length of self.pe is 2 * input_len - 1
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        # Suppose `i` means to the position of query vecotr and `j` means the
        # position of key vector. We use position relative positions when keys
        # are to the left (i>j) and negative relative positions otherwise (i<j).
        pe_positive = torch.zeros(x.size(1), self.d_model)
        pe_negative = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        # Reserve the order of positive indices and concat both positive and
        # negative indices. This is used to support the shifting trick
        # as in https://arxiv.org/abs/1901.02860
        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor, offset: tp.Union[int, torch.Tensor] = 0):
        """Add positional encoding.

        Args:
            x (torch.Tensor): Input tensor (batch, time, `*`).

        Returns:
            torch.Tensor: Encoded tensor (batch, time, `*`).

        """
        self.extend_pe(x)
        x = x * self.xscale
        pos_emb = self.position_encoding(size=x.size(1), offset=offset)
        return self.dropout(x), self.dropout(pos_emb)

    def position_encoding(self,
                          offset: tp.Union[int, torch.Tensor],
                          size: int) -> torch.Tensor:
        """ For getting encoding in a streaming fashion

        Attention!!!!!
        we apply dropout only once at the whole utterance level in a none
        streaming way, but will call this function several times with
        increasing input size in a streaming scenario, so the dropout will
        be applied several times.

        Args:
            offset (int or torch.tensor): start offset
            size (int): required size of position encoding

        Returns:
            torch.Tensor: Corresponding encoding
        """
        pos_emb = self.pe[
            :,
            self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size,
        ]
        return pos_emb


class LinearNoSubsampling(torch.nn.Module):
    """Linear transform the input without subsampling

    Args:
        idim (int): Input dimension.
        odim (int): Output dimension.
        dropout_rate (float): Dropout rate.

    """

    def __init__(self, idim: int, odim: int, dropout_rate: float,
                 pos_enc_class: torch.nn.Module):
        """Construct an linear object."""
        super().__init__()
        self.out = torch.nn.Sequential(
            torch.nn.Linear(idim, odim),
            torch.nn.LayerNorm(odim, eps=1e-5),
            torch.nn.Dropout(dropout_rate),
        )
        self.pos_enc = pos_enc_class
        self.right_context = 0
        self.subsampling_rate = 1

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        offset: tp.Union[int, torch.Tensor] = 0
    ) -> tp.Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Input x.

        Args:
            x (torch.Tensor): Input tensor (#batch, time, idim).
            x_mask (torch.Tensor): Input mask (#batch, 1, time).

        Returns:
            torch.Tensor: linear input tensor (#batch, time', odim),
                where time' = time .
            torch.Tensor: linear input mask (#batch, 1, time'),
                where time' = time .

        """
        x = self.out(x)
        x, pos_emb = self.pos_enc(x, offset)
        return x, pos_emb, x_mask


class ConformerDecoderV2(nn.Module):
    def __init__(self,
                 input_size: int = 512,
                 output_size: int = 512,
                 attention_heads: int = 8,
                 linear_units: int = 2048,
                 num_blocks: int = 6,
                 dropout_rate: float = 0.01,
                 srcattention_start_index: int = 0,
                 srcattention_end_index: int = 2,
                 attention_dropout_rate: float = 0.01,
                 positional_dropout_rate: float = 0.01,
                 key_bias: bool = True,
                 normalize_before: bool = True,
                 ):
        super().__init__()
        self.num_blocks = num_blocks
        self.normalize_before = normalize_before
        self.output_size = output_size

        self.embed = LinearNoSubsampling(
            input_size, 
            output_size, 
            dropout_rate, 
            EspnetRelPositionalEncoding(output_size, positional_dropout_rate),
        )

        self.encoders = torch.nn.ModuleList()
        for i in range(self.num_blocks):
            # construct src attention
            if srcattention_start_index <= i <= srcattention_end_index:
                srcattention_layer = MultiHeadedAttention(
                    attention_heads, 
                    output_size, 
                    attention_dropout_rate, 
                    key_bias
                )
            else:
                srcattention_layer = None
            # construct self attention
            selfattention_layer = RelPositionMultiHeadedAttention(
                attention_heads, 
                output_size, 
                attention_dropout_rate, 
                key_bias
            )
            # construct ffn
            ffn_layer = PositionwiseFeedForward(
                output_size, 
                linear_units, 
                dropout_rate, 
                torch.nn.SiLU()
            )
            self.encoders.append(
                ConformerDecoderLayer(
                    output_size, 
                    selfattention_layer, 
                    srcattention_layer, 
                    ffn_layer, 
                    None, 
                    None, 
                    dropout_rate, 
                    normalize_before=normalize_before
                )
            )
        self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)

    def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
                       memory: torch.Tensor, memory_masks: torch.Tensor,
                       pos_emb: torch.Tensor, mask_pad: torch.Tensor) -> torch.Tensor:
        for layer in self.encoders:
            xs, chunk_masks, _, _ = layer(xs, chunk_masks, memory, memory_masks, pos_emb, mask_pad)
        return xs

    def forward(self, 
                xs:torch.Tensor, 
                xs_lens:torch.Tensor, 
                memory:torch.Tensor, 
                memory_lens: torch.Tensor,
                ):
        T = xs.size(1)
        masks = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        T2 = memory.size(1)
        memory_masks = ~make_pad_mask(memory_lens, T2).unsqueeze(1) # (B, 1, T2)

        xs, pos_emb, masks = self.embed(xs, masks)

        xs = self.forward_layers(xs, masks, memory, memory_masks, pos_emb, masks)

        if self.normalize_before:
            xs = self.after_norm(xs)
        
        return xs, masks