Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import torch
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
import spaces
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
8 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
@@ -118,7 +117,7 @@ STYLE = """
|
|
118 |
.tree ul:has(> li:only-child)::before {
|
119 |
width:40px;
|
120 |
}
|
121 |
-
.
|
122 |
border-right: 2px solid var(--body-text-color);
|
123 |
border-bottom: 2px solid var(--body-text-color);
|
124 |
content: "";
|
@@ -150,13 +149,13 @@ STYLE = """
|
|
150 |
}
|
151 |
/*Hover-Section*/
|
152 |
.tree li a:hover, .tree li a:hover+ul li a {
|
153 |
-
background:
|
154 |
}
|
155 |
-
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
156 |
-
border-color:
|
157 |
}
|
158 |
-
.end-of-text, .chosen {
|
159 |
-
background-color:
|
160 |
}
|
161 |
.end-of-text {
|
162 |
width:auto!important;
|
@@ -164,7 +163,10 @@ STYLE = """
|
|
164 |
.nonfinal {
|
165 |
width:280px;
|
166 |
min-width: 280px;
|
167 |
-
}
|
|
|
|
|
|
|
168 |
"""
|
169 |
|
170 |
|
@@ -186,7 +188,7 @@ def generate_markdown_table(
|
|
186 |
token = tokenizer.decode([token_idx])
|
187 |
item_class = ""
|
188 |
if chosen_tokens and token in chosen_tokens:
|
189 |
-
item_class = "chosen"
|
190 |
markdown_table += f"""
|
191 |
<tr class={item_class}>
|
192 |
<td>{clean(token)}</td>
|
@@ -198,16 +200,16 @@ def generate_markdown_table(
|
|
198 |
return markdown_table
|
199 |
|
200 |
|
201 |
-
def generate_nodes(
|
202 |
"""Recursively generate HTML for the tree nodes."""
|
203 |
-
token = tokenizer.decode([
|
|
|
|
|
204 |
|
205 |
if node.is_final:
|
206 |
-
return f"<li> <a href='#' class='end-of-text'> <span> <b>{clean(token)}</b> <br>Total score: {node.total_score:.2f}</span> </a> </li>"
|
207 |
|
208 |
-
html_content = (
|
209 |
-
f"<li> <a href='#' class='nonfinal'> <span> <b>{clean(token)}</b> </span>"
|
210 |
-
)
|
211 |
if node.table is not None:
|
212 |
html_content += node.table
|
213 |
html_content += "</a>"
|
@@ -215,7 +217,7 @@ def generate_nodes(token_ix, node, step):
|
|
215 |
if len(node.children.keys()) > 0:
|
216 |
html_content += "<ul> "
|
217 |
for token_ix, subnode in node.children.items():
|
218 |
-
html_content += generate_nodes(
|
219 |
html_content += "</ul>"
|
220 |
html_content += "</li>"
|
221 |
|
@@ -227,8 +229,8 @@ def generate_html(start_sentence, original_tree):
|
|
227 |
<div class="tree">
|
228 |
<ul> <li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
|
229 |
html_output += "<ul> "
|
230 |
-
for
|
231 |
-
html_output += generate_nodes(
|
232 |
html_output += "</ul>"
|
233 |
html_output += """
|
234 |
</li> </ul>
|
@@ -249,24 +251,25 @@ class BeamNode:
|
|
249 |
cumulative_score: float
|
250 |
children_score_divider: float
|
251 |
table: str
|
252 |
-
|
253 |
children: Dict[int, "BeamNode"]
|
254 |
total_score: float
|
255 |
is_final: bool
|
|
|
256 |
|
257 |
|
258 |
-
def generate_beams(start_sentence, scores,
|
259 |
-
sequences = sequences.cpu().numpy()
|
260 |
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
|
261 |
original_tree = BeamNode(
|
262 |
cumulative_score=0,
|
263 |
current_token_ix=None,
|
264 |
table=None,
|
265 |
-
|
266 |
children={},
|
267 |
children_score_divider=((input_length + 1) ** length_penalty),
|
268 |
total_score=None,
|
269 |
is_final=False,
|
|
|
270 |
)
|
271 |
n_beams = len(scores[0])
|
272 |
beam_trees = [original_tree] * n_beams
|
@@ -296,7 +299,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
296 |
+ current_beam.cumulative_score
|
297 |
)
|
298 |
beam_indexes += [beam_ix] * n_beams
|
299 |
-
current_completions += [beam_trees[beam_ix].
|
300 |
top_tokens += [tokenizer.decode([el]) for el in current_top_token_indexes]
|
301 |
|
302 |
top_df = pd.DataFrame.from_dict(
|
@@ -347,12 +350,14 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
347 |
cumulative_scores[source_beam_ix]
|
348 |
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
|
349 |
)
|
|
|
|
|
|
|
350 |
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
|
351 |
current_token_ix=current_token_choice_ix,
|
352 |
table=None,
|
353 |
children={},
|
354 |
-
|
355 |
-
+ current_token_choice,
|
356 |
cumulative_score=cumulative_score,
|
357 |
total_score=cumulative_score
|
358 |
/ ((input_length + step - 1) ** length_penalty),
|
@@ -361,6 +366,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
361 |
step == len(scores) - 1
|
362 |
or current_token_choice_ix == tokenizer.eos_token_id
|
363 |
),
|
|
|
364 |
)
|
365 |
|
366 |
# Reassign all beams at once
|
@@ -376,7 +382,7 @@ def generate_beams(start_sentence, scores, sequences, length_penalty):
|
|
376 |
|
377 |
return original_tree
|
378 |
|
379 |
-
|
380 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
381 |
inputs = tokenizer([input_text], return_tensors="pt")
|
382 |
|
@@ -390,17 +396,21 @@ def get_beam_search_html(input_text, number_steps, number_beams, length_penalty)
|
|
390 |
output_scores=True,
|
391 |
do_sample=False,
|
392 |
)
|
393 |
-
markdown = "
|
|
|
|
|
|
|
|
|
394 |
# Sequences are padded anyway so you can batch decode them
|
395 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
396 |
for i, sequence in enumerate(decoded_sequences):
|
397 |
-
markdown += f"\n-
|
398 |
|
399 |
original_tree = generate_beams(
|
400 |
input_text,
|
401 |
outputs.scores[:],
|
402 |
-
outputs.sequences[:, :],
|
403 |
length_penalty,
|
|
|
404 |
)
|
405 |
html = generate_html(input_text, original_tree)
|
406 |
return html, markdown
|
@@ -408,20 +418,21 @@ def get_beam_search_html(input_text, number_steps, number_beams, length_penalty)
|
|
408 |
|
409 |
with gr.Blocks(
|
410 |
theme=gr.themes.Soft(
|
411 |
-
|
|
|
412 |
),
|
413 |
css=STYLE,
|
414 |
) as demo:
|
415 |
gr.Markdown(
|
416 |
-
"""# Beam
|
417 |
|
418 |
Play with the parameters below to understand how beam search decoding works!
|
419 |
|
420 |
-
#### Parameters
|
421 |
-
- **Sentence to decode from
|
422 |
-
- **Number of steps
|
423 |
-
- **Number of beams
|
424 |
-
- **Length penalty
|
425 |
This parameter will not impact the beam search paths, but only influence the choice of sequences in the end towards longer or shorter sequences.
|
426 |
"""
|
427 |
)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
7 |
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
|
|
117 |
.tree ul:has(> li:only-child)::before {
|
118 |
width:40px;
|
119 |
}
|
120 |
+
.child:before {
|
121 |
border-right: 2px solid var(--body-text-color);
|
122 |
border-bottom: 2px solid var(--body-text-color);
|
123 |
content: "";
|
|
|
149 |
}
|
150 |
/*Hover-Section*/
|
151 |
.tree li a:hover, .tree li a:hover+ul li a {
|
152 |
+
background: var(--primary-700);
|
153 |
}
|
154 |
+
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before, .tree li a:hover+ul a::before {
|
155 |
+
border-color: var(--primary-200);
|
156 |
}
|
157 |
+
.end-of-text, .chosen-token {
|
158 |
+
background-color: var(--primary-600);
|
159 |
}
|
160 |
.end-of-text {
|
161 |
width:auto!important;
|
|
|
163 |
.nonfinal {
|
164 |
width:280px;
|
165 |
min-width: 280px;
|
166 |
+
}
|
167 |
+
.selected-sequence {
|
168 |
+
background-color: var(--secondary-600)!important;
|
169 |
+
}
|
170 |
"""
|
171 |
|
172 |
|
|
|
188 |
token = tokenizer.decode([token_idx])
|
189 |
item_class = ""
|
190 |
if chosen_tokens and token in chosen_tokens:
|
191 |
+
item_class = "chosen-token"
|
192 |
markdown_table += f"""
|
193 |
<tr class={item_class}>
|
194 |
<td>{clean(token)}</td>
|
|
|
200 |
return markdown_table
|
201 |
|
202 |
|
203 |
+
def generate_nodes(node, step):
|
204 |
"""Recursively generate HTML for the tree nodes."""
|
205 |
+
token = tokenizer.decode([node.current_token_ix])
|
206 |
+
|
207 |
+
selected_class = "selected-sequence" if node.is_selected_sequence else ""
|
208 |
|
209 |
if node.is_final:
|
210 |
+
return f"<li> <a href='#' class='end-of-text child {selected_class}'> <span> <b>{clean(token)}</b> <br>Total score: {node.total_score:.2f}</span> </a> </li>"
|
211 |
|
212 |
+
html_content = f"<li> <a href='#' class='nonfinal child {selected_class}'> <span> <b>{clean(token)}</b> </span>"
|
|
|
|
|
213 |
if node.table is not None:
|
214 |
html_content += node.table
|
215 |
html_content += "</a>"
|
|
|
217 |
if len(node.children.keys()) > 0:
|
218 |
html_content += "<ul> "
|
219 |
for token_ix, subnode in node.children.items():
|
220 |
+
html_content += generate_nodes(subnode, step=step + 1)
|
221 |
html_content += "</ul>"
|
222 |
html_content += "</li>"
|
223 |
|
|
|
229 |
<div class="tree">
|
230 |
<ul> <li> <a href='#' id='root'> <span> <b>{start_sentence}</b> </span> {original_tree.table} </a>"""
|
231 |
html_output += "<ul> "
|
232 |
+
for subnode in original_tree.children.values():
|
233 |
+
html_output += generate_nodes(subnode, step=1)
|
234 |
html_output += "</ul>"
|
235 |
html_output += """
|
236 |
</li> </ul>
|
|
|
251 |
cumulative_score: float
|
252 |
children_score_divider: float
|
253 |
table: str
|
254 |
+
current_sequence: str
|
255 |
children: Dict[int, "BeamNode"]
|
256 |
total_score: float
|
257 |
is_final: bool
|
258 |
+
is_selected_sequence: bool
|
259 |
|
260 |
|
261 |
+
def generate_beams(start_sentence, scores, length_penalty, decoded_sequences):
|
|
|
262 |
input_length = len(tokenizer([start_sentence], return_tensors="pt"))
|
263 |
original_tree = BeamNode(
|
264 |
cumulative_score=0,
|
265 |
current_token_ix=None,
|
266 |
table=None,
|
267 |
+
current_sequence=start_sentence,
|
268 |
children={},
|
269 |
children_score_divider=((input_length + 1) ** length_penalty),
|
270 |
total_score=None,
|
271 |
is_final=False,
|
272 |
+
is_selected_sequence=False,
|
273 |
)
|
274 |
n_beams = len(scores[0])
|
275 |
beam_trees = [original_tree] * n_beams
|
|
|
299 |
+ current_beam.cumulative_score
|
300 |
)
|
301 |
beam_indexes += [beam_ix] * n_beams
|
302 |
+
current_completions += [beam_trees[beam_ix].current_sequence] * n_beams
|
303 |
top_tokens += [tokenizer.decode([el]) for el in current_top_token_indexes]
|
304 |
|
305 |
top_df = pd.DataFrame.from_dict(
|
|
|
350 |
cumulative_scores[source_beam_ix]
|
351 |
+ scores[step][source_beam_ix][current_token_choice_ix].numpy()
|
352 |
)
|
353 |
+
current_sequence = (
|
354 |
+
beam_trees[source_beam_ix].current_sequence + current_token_choice
|
355 |
+
)
|
356 |
beam_trees[source_beam_ix].children[current_token_choice_ix] = BeamNode(
|
357 |
current_token_ix=current_token_choice_ix,
|
358 |
table=None,
|
359 |
children={},
|
360 |
+
current_sequence=current_sequence,
|
|
|
361 |
cumulative_score=cumulative_score,
|
362 |
total_score=cumulative_score
|
363 |
/ ((input_length + step - 1) ** length_penalty),
|
|
|
366 |
step == len(scores) - 1
|
367 |
or current_token_choice_ix == tokenizer.eos_token_id
|
368 |
),
|
369 |
+
is_selected_sequence=(current_sequence in decoded_sequences),
|
370 |
)
|
371 |
|
372 |
# Reassign all beams at once
|
|
|
382 |
|
383 |
return original_tree
|
384 |
|
385 |
+
|
386 |
def get_beam_search_html(input_text, number_steps, number_beams, length_penalty):
|
387 |
inputs = tokenizer([input_text], return_tensors="pt")
|
388 |
|
|
|
396 |
output_scores=True,
|
397 |
do_sample=False,
|
398 |
)
|
399 |
+
markdown = "The conclusive sequences are the ones that end in an `<|endoftext|>` token or at the end of generation."
|
400 |
+
markdown += "\n\nThey are ranked by their scores, as given by the formula `score = cumulative_score / (output_length ** length_penalty)`.\n\n"
|
401 |
+
markdown += "Only the top `num_beams` scoring sequences are returned: in the tree they are highlighted in **<span style='color:var(--secondary-600)!important'>blue</span>**."
|
402 |
+
markdown += " The non-selected sequences are also shown in the tree, highlighted in **<span style='color:var(--primary-600)!important'>yellow</span>**."
|
403 |
+
markdown += "\n#### <span style='color:var(--secondary-600)!important'>Output sequences:</span>"
|
404 |
# Sequences are padded anyway so you can batch decode them
|
405 |
decoded_sequences = tokenizer.batch_decode(outputs.sequences)
|
406 |
for i, sequence in enumerate(decoded_sequences):
|
407 |
+
markdown += f"\n- Score `{outputs.sequences_scores[i]:.2f}`: `{clean(sequence.replace('<s> ', ''))}`"
|
408 |
|
409 |
original_tree = generate_beams(
|
410 |
input_text,
|
411 |
outputs.scores[:],
|
|
|
412 |
length_penalty,
|
413 |
+
decoded_sequences,
|
414 |
)
|
415 |
html = generate_html(input_text, original_tree)
|
416 |
return html, markdown
|
|
|
418 |
|
419 |
with gr.Blocks(
|
420 |
theme=gr.themes.Soft(
|
421 |
+
primary_hue=gr.themes.colors.yellow,
|
422 |
+
secondary_hue=gr.themes.colors.blue,
|
423 |
),
|
424 |
css=STYLE,
|
425 |
) as demo:
|
426 |
gr.Markdown(
|
427 |
+
"""# <span style='color:var(--primary-600)!important'>Beam Search Visualizer</span>
|
428 |
|
429 |
Play with the parameters below to understand how beam search decoding works!
|
430 |
|
431 |
+
#### <span style='color:var(--primary-600)!important'>Parameters:</span>
|
432 |
+
- **Sentence to decode from** (`inputs`): the input sequence to your decoder.
|
433 |
+
- **Number of steps** (`max_new_tokens`): the number of tokens to generate
|
434 |
+
- **Number of beams** (`num_beams`): the number of beams to use
|
435 |
+
- **Length penalty** (`length_penalty`): the length penalty to apply to outputs. `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences.
|
436 |
This parameter will not impact the beam search paths, but only influence the choice of sequences in the end towards longer or shorter sequences.
|
437 |
"""
|
438 |
)
|