m-ric HF staff commited on
Commit
efa8da2
1 Parent(s): 4fde691

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -4,8 +4,8 @@ import numpy as np
4
  import gradio as gr
5
  import spaces
6
 
7
- tokenizer = AutoTokenizer.from_pretrained("gpt2")
8
- model = AutoModelForCausalLM.from_pretrained("gpt2")
9
 
10
  print("Loading finished.")
11
 
@@ -147,7 +147,7 @@ a:before {
147
  text-decoration-line: none;
148
  border-radius: 5px;
149
  transition: .5s;
150
- width: 260px;
151
  display: flex;
152
  align-items: center;
153
  justify-content: space-around;
@@ -207,7 +207,8 @@ def generate_nodes(token_ix, node, step):
207
  """Recursively generate HTML for the tree nodes."""
208
  token = tokenizer.decode([token_ix])
209
  html_content = f" <li> <a href='#' class='{('chosen' if node.table is None else '')}'> <span> <b>{token_ix}:<br>{clean(token)}</b> </span> "
210
- html_content += node.table if node.table is not None else ""
 
211
  html_content += "</a>"
212
  if len(node.children.keys()) > 0:
213
  html_content += "<ul> "
@@ -371,7 +372,7 @@ def get_beam_search_html(input_text, number_steps, number_beams, length_penalty)
371
  output_scores=True,
372
  do_sample=False,
373
  )
374
- markdown = "Sequences:"
375
  decoded_sequences = tokenizer.batch_decode(outputs.sequences)
376
  for i, sequence in enumerate(decoded_sequences):
377
  markdown += f"\n- {sequence} ( score {outputs.sequences_scores[i]:.2f})"
@@ -402,11 +403,11 @@ Play with the parameters below to understand how beam search decoding works!
402
  - **Number of beams**: the number of beams to use
403
  - **Length penalty**: the length penalty to apply to outputs. `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences.
404
  """)
405
- text = gr.Textbox(label="Sentence to decode from", value="Today is")
406
  with gr.Row():
407
  steps = gr.Slider(label="Number of steps", minimum=1, maximum=8, step=1, value=4)
408
  beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
409
- length_penalty = gr.Slider(label="Length penalty", minimum=-5, maximum=5, step=0.5, value=1)
410
  button = gr.Button()
411
  out_html = gr.Markdown()
412
  out_markdown = gr.Markdown()
 
4
  import gradio as gr
5
  import spaces
6
 
7
+ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
8
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
9
 
10
  print("Loading finished.")
11
 
 
147
  text-decoration-line: none;
148
  border-radius: 5px;
149
  transition: .5s;
150
+ width: 280px;
151
  display: flex;
152
  align-items: center;
153
  justify-content: space-around;
 
207
  """Recursively generate HTML for the tree nodes."""
208
  token = tokenizer.decode([token_ix])
209
  html_content = f" <li> <a href='#' class='{('chosen' if node.table is None else '')}'> <span> <b>{token_ix}:<br>{clean(token)}</b> </span> "
210
+ if node.table is not None:
211
+ html_content += node.table
212
  html_content += "</a>"
213
  if len(node.children.keys()) > 0:
214
  html_content += "<ul> "
 
372
  output_scores=True,
373
  do_sample=False,
374
  )
375
+ markdown = "Output sequences:"
376
  decoded_sequences = tokenizer.batch_decode(outputs.sequences)
377
  for i, sequence in enumerate(decoded_sequences):
378
  markdown += f"\n- {sequence} ( score {outputs.sequences_scores[i]:.2f})"
 
403
  - **Number of beams**: the number of beams to use
404
  - **Length penalty**: the length penalty to apply to outputs. `length_penalty` > 0.0 promotes longer sequences, while `length_penalty` < 0.0 encourages shorter sequences.
405
  """)
406
+ text = gr.Textbox(label="Sentence to decode from", value="Conclusion: thanks a lot. This article was originally published on")
407
  with gr.Row():
408
  steps = gr.Slider(label="Number of steps", minimum=1, maximum=8, step=1, value=4)
409
  beams = gr.Slider(label="Number of beams", minimum=2, maximum=4, step=1, value=3)
410
+ length_penalty = gr.Slider(label="Length penalty", minimum=-4, maximum=4, step=0.5, value=1)
411
  button = gr.Button()
412
  out_html = gr.Markdown()
413
  out_markdown = gr.Markdown()