Spaces:
Sleeping
Sleeping
demo
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +15 -0
- app.py +427 -0
- assets/dog.webp +0 -0
- assets/vulcano.jpg +0 -0
- assets/vulcano_mask.webp +0 -0
- fluxcombined.py +1607 -0
- requirements.txt +9 -0
- saved_results/20241126_053639/input.png +0 -0
- saved_results/20241126_053639/mask.png +0 -0
- saved_results/20241126_053639/output.png +3 -0
- saved_results/20241126_053639/parameters.json +13 -0
- saved_results/20241126_055109/input.png +0 -0
- saved_results/20241126_055109/mask.png +0 -0
- saved_results/20241126_055109/output.png +3 -0
- saved_results/20241126_055109/parameters.json +13 -0
- saved_results/20241126_173140/input.png +0 -0
- saved_results/20241126_173140/mask.png +0 -0
- saved_results/20241126_173140/output.png +3 -0
- saved_results/20241126_173140/parameters.json +13 -0
- saved_results/20241126_181436/input.png +3 -0
- saved_results/20241126_181436/mask.png +0 -0
- saved_results/20241126_181436/output.png +0 -0
- saved_results/20241126_181436/parameters.json +13 -0
- saved_results/20241126_181633/input.png +3 -0
- saved_results/20241126_181633/mask.png +0 -0
- saved_results/20241126_181633/output.png +0 -0
- saved_results/20241126_181633/parameters.json +13 -0
- saved_results/20241126_214810/input.png +0 -0
- saved_results/20241126_214810/mask.png +0 -0
- saved_results/20241126_214810/output.png +3 -0
- saved_results/20241126_214810/parameters.json +13 -0
- saved_results/20241126_214908/input.png +0 -0
- saved_results/20241126_214908/mask.png +0 -0
- saved_results/20241126_214908/output.png +3 -0
- saved_results/20241126_214908/parameters.json +13 -0
- saved_results/20241126_215043/input.png +0 -0
- saved_results/20241126_215043/mask.png +0 -0
- saved_results/20241126_215043/output.png +3 -0
- saved_results/20241126_215043/parameters.json +13 -0
- saved_results/20241126_221300/input.png +0 -0
- saved_results/20241126_221300/mask.png +0 -0
- saved_results/20241126_221300/output.png +3 -0
- saved_results/20241126_221300/parameters.json +13 -0
- saved_results/20241126_222257/input.png +0 -0
- saved_results/20241126_222257/mask.png +0 -0
- saved_results/20241126_222257/output.png +3 -0
- saved_results/20241126_222257/parameters.json +13 -0
- saved_results/20241126_222442/input.png +0 -0
- saved_results/20241126_222442/mask.png +0 -0
- saved_results/20241126_222442/output.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,18 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
saved_results/20241126_053639/output.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
saved_results/20241126_055109/output.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
saved_results/20241126_173140/output.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
saved_results/20241126_181436/input.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
saved_results/20241126_181633/input.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
saved_results/20241126_214810/output.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
saved_results/20241126_214908/output.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
saved_results/20241126_215043/output.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
saved_results/20241126_221300/output.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
saved_results/20241126_222257/output.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
saved_results/20241126_222442/output.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
saved_results/20241126_222522/output.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
saved_results/20241126_223634/output.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
saved_results/20241126_223719/output.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
saved_results/20241127_025429/output.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline
|
5 |
+
from PIL import Image
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
from fluxcombined import FluxPipeline
|
14 |
+
from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
15 |
+
|
16 |
+
# Load the Stable Diffusion Inpainting model
|
17 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="scheduler")
|
18 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, scheduler=scheduler)
|
19 |
+
pipe.to("cuda") # Comment this line if GPU is not available
|
20 |
+
|
21 |
+
# Function to process the image
|
22 |
+
@spaces.GPU(duration=120)
|
23 |
+
def process_image(
|
24 |
+
mode, image_layers, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
25 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
26 |
+
):
|
27 |
+
image_with_mask = {
|
28 |
+
"image": image_layers["background"],
|
29 |
+
"mask": image_layers["layers"][0] if mask_input is None else mask_input
|
30 |
+
}
|
31 |
+
|
32 |
+
# Set seed
|
33 |
+
if randomize_seed or seed is None:
|
34 |
+
seed = random.randint(0, 2**32 - 1)
|
35 |
+
generator = torch.Generator("cuda").manual_seed(int(seed))
|
36 |
+
|
37 |
+
# Unpack image and mask
|
38 |
+
if image_with_mask is None:
|
39 |
+
return None, f"❌ Please upload an image and create a mask."
|
40 |
+
image = image_with_mask["image"]
|
41 |
+
mask = image_with_mask["mask"]
|
42 |
+
|
43 |
+
if image is None or mask is None:
|
44 |
+
return None, f"❌ Please ensure both image and mask are provided."
|
45 |
+
|
46 |
+
# Convert images to RGB
|
47 |
+
image = image.convert("RGB")
|
48 |
+
mask = mask.split()[-1] # Convert mask to grayscale
|
49 |
+
|
50 |
+
if mode == "Inpainting":
|
51 |
+
if not prompt:
|
52 |
+
return None, f"❌ Please provide a prompt for inpainting."
|
53 |
+
with torch.autocast("cuda"):
|
54 |
+
# Placeholder for using advanced parameters in the future
|
55 |
+
# Adjust parameters according to advanced settings if applicable
|
56 |
+
result = pipe.inpaint(
|
57 |
+
prompt=prompt,
|
58 |
+
input_image=image.resize((1024, 1024)),
|
59 |
+
mask_image=mask.resize((1024, 1024)),
|
60 |
+
num_inference_steps=num_inference_steps,
|
61 |
+
guidance_scale=0.5,
|
62 |
+
generator=generator,
|
63 |
+
save_masked_image=False,
|
64 |
+
output_path="",
|
65 |
+
learning_rate=learning_rate,
|
66 |
+
max_steps=max_steps
|
67 |
+
).images[0]
|
68 |
+
pipe.vae = pipe.vae.to(torch.float16)
|
69 |
+
return result, f"✅ Inpainting completed with seed {seed}."
|
70 |
+
elif mode == "Editing":
|
71 |
+
if not edit_prompt:
|
72 |
+
return None, f"❌ Please provide a prompt for editing."
|
73 |
+
if not prompt:
|
74 |
+
prompt = ""
|
75 |
+
# Resize the mask to match the image
|
76 |
+
# mask = mask.resize(image.size)
|
77 |
+
with torch.autocast("cuda"):
|
78 |
+
# Placeholder for using advanced parameters in the future
|
79 |
+
# Adjust parameters according to advanced settings if applicable
|
80 |
+
result = pipe.edit2(
|
81 |
+
prompt=edit_prompt,
|
82 |
+
input_image=image.resize((1024, 1024)),
|
83 |
+
mask_image=mask.resize((1024, 1024)),
|
84 |
+
num_inference_steps=num_inference_steps,
|
85 |
+
guidance_scale=0.0,
|
86 |
+
generator=generator,
|
87 |
+
save_masked_image=False,
|
88 |
+
output_path="",
|
89 |
+
learning_rate=learning_rate,
|
90 |
+
max_steps=max_steps,
|
91 |
+
optimization_steps=optimization_steps,
|
92 |
+
true_cfg=true_cfg,
|
93 |
+
negative_prompt=prompt,
|
94 |
+
source_steps=max_source_steps,
|
95 |
+
).images[0]
|
96 |
+
return result, f"✅ Editing completed with seed {seed}."
|
97 |
+
else:
|
98 |
+
return None, f"❌ Invalid mode selected."
|
99 |
+
|
100 |
+
# Design the Gradio interface
|
101 |
+
with gr.Blocks() as demo:
|
102 |
+
gr.Markdown(
|
103 |
+
"""
|
104 |
+
<style>
|
105 |
+
body {background-color: #f5f5f5; color: #333333;}
|
106 |
+
h1 {text-align: center; font-family: 'Helvetica', sans-serif; margin-bottom: 10px;}
|
107 |
+
h2 {text-align: center; color: #666666; font-weight: normal; margin-bottom: 30px;}
|
108 |
+
.gradio-container {max-width: 800px; margin: auto;}
|
109 |
+
.footer {text-align: center; margin-top: 20px; color: #999999; font-size: 12px;}
|
110 |
+
</style>
|
111 |
+
"""
|
112 |
+
)
|
113 |
+
gr.Markdown("<h1>🍲 FlowChef 🍲</h1>")
|
114 |
+
gr.Markdown("<h2>Inversion/Gradient/Training-free Steering of Flux.1[Dev]</h2>")
|
115 |
+
gr.Markdown("<h2><p><a href='https://flowchef.github.io/'>Project Page</a> | <a href='#'>Paper</a></p> (Steering Rectified Flow Models in the Vector Field for Controlled Image Generation)</h2>")
|
116 |
+
gr.Markdown("<h3>💡 We recommend going through our <a href='#'>tutorial introduction</a> before getting started!</h3>")
|
117 |
+
|
118 |
+
# Store current state
|
119 |
+
current_input_image = None
|
120 |
+
current_mask = None
|
121 |
+
current_output_image = None
|
122 |
+
current_params = {}
|
123 |
+
|
124 |
+
# Images at the top
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
image_input = gr.ImageMask(
|
128 |
+
# source="upload",
|
129 |
+
# tool="sketch",
|
130 |
+
type="pil",
|
131 |
+
label="Input Image and Mask",
|
132 |
+
image_mode="RGBA",
|
133 |
+
height=512,
|
134 |
+
width=512,
|
135 |
+
)
|
136 |
+
with gr.Column():
|
137 |
+
output_image = gr.Image(label="Output Image")
|
138 |
+
|
139 |
+
# All options below
|
140 |
+
with gr.Column():
|
141 |
+
mode = gr.Radio(
|
142 |
+
choices=["Inpainting", "Editing"], label="Select Mode", value="Inpainting"
|
143 |
+
)
|
144 |
+
prompt = gr.Textbox(
|
145 |
+
label="Prompt",
|
146 |
+
placeholder="Describe what should appear in the masked area..."
|
147 |
+
)
|
148 |
+
edit_prompt = gr.Textbox(
|
149 |
+
label="Editing Prompt",
|
150 |
+
placeholder="Describe how you want to edit the image..."
|
151 |
+
)
|
152 |
+
with gr.Row():
|
153 |
+
seed = gr.Number(label="Seed (Optional)", value=None)
|
154 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
155 |
+
num_inference_steps = gr.Slider(
|
156 |
+
label="Inference Steps", minimum=1, maximum=50, value=30
|
157 |
+
)
|
158 |
+
# Advanced settings in an accordion
|
159 |
+
with gr.Accordion("Advanced Settings", open=False):
|
160 |
+
max_steps = gr.Slider(label="Max Steps", minimum=1, maximum=30, value=30)
|
161 |
+
learning_rate = gr.Slider(label="Learning Rate", minimum=0.1, maximum=1.0, value=0.5)
|
162 |
+
true_cfg = gr.Slider(label="Guidance Scale (only for editing)", minimum=1, maximum=20, value=2)
|
163 |
+
max_source_steps = gr.Slider(label="Max Source Steps (only for editing)", minimum=1, maximum=30, value=20)
|
164 |
+
optimization_steps = gr.Slider(label="Optimization Steps", minimum=1, maximum=10, value=1)
|
165 |
+
mask_input = gr.Image(
|
166 |
+
type="pil",
|
167 |
+
label="Optional Mask",
|
168 |
+
image_mode="RGBA",
|
169 |
+
)
|
170 |
+
with gr.Row():
|
171 |
+
run_button = gr.Button("Run", variant="primary")
|
172 |
+
save_button = gr.Button("Save Data", variant="secondary")
|
173 |
+
|
174 |
+
def update_visibility(selected_mode):
|
175 |
+
if selected_mode == "Inpainting":
|
176 |
+
return gr.update(visible=True), gr.update(visible=False)
|
177 |
+
else:
|
178 |
+
return gr.update(visible=True), gr.update(visible=True)
|
179 |
+
|
180 |
+
mode.change(
|
181 |
+
update_visibility,
|
182 |
+
inputs=mode,
|
183 |
+
outputs=[prompt, edit_prompt],
|
184 |
+
)
|
185 |
+
|
186 |
+
def run_and_update_status(
|
187 |
+
mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
188 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
189 |
+
):
|
190 |
+
result_image, result_status = process_image(
|
191 |
+
mode, image_with_mask, prompt, edit_prompt, seed, randomize_seed, num_inference_steps,
|
192 |
+
max_steps, learning_rate, max_source_steps, optimization_steps, true_cfg, mask_input
|
193 |
+
)
|
194 |
+
|
195 |
+
# Store current state
|
196 |
+
global current_input_image, current_mask, current_output_image, current_params
|
197 |
+
|
198 |
+
current_input_image = image_with_mask["background"] if image_with_mask else None
|
199 |
+
current_mask = mask_input if mask_input is not None else (image_with_mask["layers"][0] if image_with_mask else None)
|
200 |
+
current_output_image = result_image
|
201 |
+
current_params = {
|
202 |
+
"mode": mode,
|
203 |
+
"prompt": prompt,
|
204 |
+
"edit_prompt": edit_prompt,
|
205 |
+
"seed": seed,
|
206 |
+
"randomize_seed": randomize_seed,
|
207 |
+
"num_inference_steps": num_inference_steps,
|
208 |
+
"max_steps": max_steps,
|
209 |
+
"learning_rate": learning_rate,
|
210 |
+
"max_source_steps": max_source_steps,
|
211 |
+
"optimization_steps": optimization_steps,
|
212 |
+
"true_cfg": true_cfg
|
213 |
+
}
|
214 |
+
|
215 |
+
return result_image
|
216 |
+
|
217 |
+
def save_data():
|
218 |
+
if not os.path.exists("saved_results"):
|
219 |
+
os.makedirs("saved_results")
|
220 |
+
|
221 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
222 |
+
save_dir = os.path.join("saved_results", timestamp)
|
223 |
+
os.makedirs(save_dir)
|
224 |
+
|
225 |
+
# Save images
|
226 |
+
if current_input_image:
|
227 |
+
current_input_image.save(os.path.join(save_dir, "input.png"))
|
228 |
+
if current_mask:
|
229 |
+
current_mask.save(os.path.join(save_dir, "mask.png"))
|
230 |
+
if current_output_image:
|
231 |
+
current_output_image.save(os.path.join(save_dir, "output.png"))
|
232 |
+
|
233 |
+
# Save parameters
|
234 |
+
with open(os.path.join(save_dir, "parameters.json"), "w") as f:
|
235 |
+
json.dump(current_params, f, indent=4)
|
236 |
+
|
237 |
+
return f"✅ Data saved in {save_dir}"
|
238 |
+
|
239 |
+
run_button.click(
|
240 |
+
fn=run_and_update_status,
|
241 |
+
inputs=[
|
242 |
+
mode,
|
243 |
+
image_input,
|
244 |
+
prompt,
|
245 |
+
edit_prompt,
|
246 |
+
seed,
|
247 |
+
randomize_seed,
|
248 |
+
num_inference_steps,
|
249 |
+
max_steps,
|
250 |
+
learning_rate,
|
251 |
+
max_source_steps,
|
252 |
+
optimization_steps,
|
253 |
+
true_cfg,
|
254 |
+
mask_input
|
255 |
+
],
|
256 |
+
outputs=output_image,
|
257 |
+
)
|
258 |
+
|
259 |
+
save_button.click(fn=save_data)
|
260 |
+
|
261 |
+
gr.Markdown(
|
262 |
+
"<div class='footer'>Developed with ❤️ using Flux and Gradio by <a href='https://maitreyapatel.com'>Maitreya Patel</a></div>"
|
263 |
+
)
|
264 |
+
|
265 |
+
def load_example_image_with_mask(image_path):
|
266 |
+
# Load the image
|
267 |
+
image = Image.open(image_path)
|
268 |
+
# Create an empty mask of the same size
|
269 |
+
mask = Image.new('L', image.size, 0)
|
270 |
+
return {"background": image, "layers": [mask], "composite": image}
|
271 |
+
|
272 |
+
examples_dir = "assets"
|
273 |
+
volcano_dict = load_example_image_with_mask(os.path.join(examples_dir, "vulcano.jpg"))
|
274 |
+
dog_dict = load_example_image_with_mask(os.path.join(examples_dir, "dog.webp"))
|
275 |
+
|
276 |
+
gr.Examples(
|
277 |
+
examples=[
|
278 |
+
[
|
279 |
+
"Inpainting", # mode
|
280 |
+
"./saved_results/20241126_053639/input.png", # image with mask
|
281 |
+
"./saved_results/20241126_053639/mask.png",
|
282 |
+
"./saved_results/20241126_053639/output.png",
|
283 |
+
"a dog", # prompt
|
284 |
+
" ", # edit_prompt
|
285 |
+
0, # seed
|
286 |
+
True, # randomize_seed
|
287 |
+
30, # num_inference_steps
|
288 |
+
30, # max_steps
|
289 |
+
1.0, # learning_rate
|
290 |
+
20, # max_source_steps
|
291 |
+
10, # optimization_steps
|
292 |
+
2, # true_cfg
|
293 |
+
],
|
294 |
+
[
|
295 |
+
"Inpainting", # mode
|
296 |
+
"./saved_results/20241126_173140/input.png", # image with mask
|
297 |
+
"./saved_results/20241126_173140/mask.png",
|
298 |
+
"./saved_results/20241126_173140/output.png",
|
299 |
+
"a cat with blue eyes", # prompt
|
300 |
+
" ", # edit_prompt
|
301 |
+
0, # seed
|
302 |
+
True, # randomize_seed
|
303 |
+
30, # num_inference_steps
|
304 |
+
20, # max_steps
|
305 |
+
1.0, # learning_rate
|
306 |
+
20, # max_source_steps
|
307 |
+
10, # optimization_steps
|
308 |
+
2, # true_cfg
|
309 |
+
],
|
310 |
+
[
|
311 |
+
"Editing", # mode
|
312 |
+
"./saved_results/20241126_181633/input.png", # image with mask
|
313 |
+
"./saved_results/20241126_181633/mask.png",
|
314 |
+
"./saved_results/20241126_181633/output.png",
|
315 |
+
" ", # prompt
|
316 |
+
"volcano eruption", # edit_prompt
|
317 |
+
0, # seed
|
318 |
+
True, # randomize_seed
|
319 |
+
30, # num_inference_steps
|
320 |
+
20, # max_steps
|
321 |
+
0.5, # learning_rate
|
322 |
+
2, # max_source_steps
|
323 |
+
3, # optimization_steps
|
324 |
+
4.5, # true_cfg
|
325 |
+
],
|
326 |
+
[
|
327 |
+
"Editing", # mode
|
328 |
+
"./saved_results/20241126_214810/input.png", # image with mask
|
329 |
+
"./saved_results/20241126_214810/mask.png",
|
330 |
+
"./saved_results/20241126_214810/output.png",
|
331 |
+
" ", # prompt
|
332 |
+
"a dog with flowers in the mouth", # edit_prompt
|
333 |
+
0, # seed
|
334 |
+
True, # randomize_seed
|
335 |
+
30, # num_inference_steps
|
336 |
+
30, # max_steps
|
337 |
+
1, # learning_rate
|
338 |
+
5, # max_source_steps
|
339 |
+
3, # optimization_steps
|
340 |
+
4.5, # true_cfg
|
341 |
+
],
|
342 |
+
[
|
343 |
+
"Inpainting", # mode
|
344 |
+
"./saved_results/20241127_025429/input.png", # image with mask
|
345 |
+
"./saved_results/20241127_025429/mask.png",
|
346 |
+
"./saved_results/20241127_025429/output.png",
|
347 |
+
"A building with \"ASU\" written on it.", # prompt
|
348 |
+
"", # edit_prompt
|
349 |
+
52, # seed
|
350 |
+
False, # randomize_seed
|
351 |
+
30, # num_inference_steps
|
352 |
+
30, # max_steps
|
353 |
+
1, # learning_rate
|
354 |
+
20, # max_source_steps
|
355 |
+
10, # optimization_steps
|
356 |
+
2, # true_cfg
|
357 |
+
],
|
358 |
+
[
|
359 |
+
"Inpainting", # mode
|
360 |
+
"./saved_results/20241126_222257/input.png", # image with mask
|
361 |
+
"./saved_results/20241126_222257/mask.png",
|
362 |
+
"./saved_results/20241126_222257/output.png",
|
363 |
+
"A cute pig with big eyes", # prompt
|
364 |
+
"", # edit_prompt
|
365 |
+
0, # seed
|
366 |
+
True, # randomize_seed
|
367 |
+
30, # num_inference_steps
|
368 |
+
20, # max_steps
|
369 |
+
1, # learning_rate
|
370 |
+
20, # max_source_steps
|
371 |
+
5, # optimization_steps
|
372 |
+
2, # true_cfg
|
373 |
+
],
|
374 |
+
[
|
375 |
+
"Editing", # mode
|
376 |
+
"./saved_results/20241126_222522/input.png", # image with mask
|
377 |
+
"./saved_results/20241126_222522/mask.png",
|
378 |
+
"./saved_results/20241126_222522/output.png",
|
379 |
+
"A cute rabbit with big eyes", # prompt
|
380 |
+
"A cute pig with big eyes", # edit_prompt
|
381 |
+
0, # seed
|
382 |
+
True, # randomize_seed
|
383 |
+
30, # num_inference_steps
|
384 |
+
20, # max_steps
|
385 |
+
0.4, # learning_rate
|
386 |
+
5, # max_source_steps
|
387 |
+
5, # optimization_steps
|
388 |
+
4.5, # true_cfg
|
389 |
+
],
|
390 |
+
[
|
391 |
+
"Editing", # mode
|
392 |
+
"./saved_results/20241126_223719/input.png", # image with mask
|
393 |
+
"./saved_results/20241126_223719/mask.png",
|
394 |
+
"./saved_results/20241126_223719/output.png",
|
395 |
+
"a cat", # prompt
|
396 |
+
"a tiger", # edit_prompt
|
397 |
+
0, # seed
|
398 |
+
True, # randomize_seed
|
399 |
+
30, # num_inference_steps
|
400 |
+
30, # max_steps
|
401 |
+
0.6, # learning_rate
|
402 |
+
10, # max_source_steps
|
403 |
+
5, # optimization_steps
|
404 |
+
4.5, # true_cfg
|
405 |
+
],
|
406 |
+
],
|
407 |
+
inputs=[
|
408 |
+
mode,
|
409 |
+
image_input,
|
410 |
+
mask_input,
|
411 |
+
output_image,
|
412 |
+
prompt,
|
413 |
+
edit_prompt,
|
414 |
+
seed,
|
415 |
+
randomize_seed,
|
416 |
+
num_inference_steps,
|
417 |
+
max_steps,
|
418 |
+
learning_rate,
|
419 |
+
max_source_steps,
|
420 |
+
optimization_steps,
|
421 |
+
true_cfg,
|
422 |
+
],
|
423 |
+
# outputs=[output_image],
|
424 |
+
# fn=run_and_update_status,
|
425 |
+
# cache_examples=True,
|
426 |
+
)
|
427 |
+
demo.launch()
|
assets/dog.webp
ADDED
![]() |
assets/vulcano.jpg
ADDED
![]() |
assets/vulcano_mask.webp
ADDED
![]() |
fluxcombined.py
ADDED
@@ -0,0 +1,1607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
21 |
+
|
22 |
+
from diffusers.image_processor import VaeImageProcessor
|
23 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
24 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
25 |
+
from diffusers.models.transformers import FluxTransformer2DModel
|
26 |
+
from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
27 |
+
from diffusers.utils import (
|
28 |
+
USE_PEFT_BACKEND,
|
29 |
+
is_torch_xla_available,
|
30 |
+
logging,
|
31 |
+
replace_example_docstring,
|
32 |
+
scale_lora_layers,
|
33 |
+
unscale_lora_layers,
|
34 |
+
)
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
37 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
38 |
+
|
39 |
+
import os
|
40 |
+
import torch
|
41 |
+
import torch.nn as nn
|
42 |
+
from os.path import expanduser # pylint: disable=import-outside-toplevel
|
43 |
+
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel
|
44 |
+
from torchvision import transforms as TF
|
45 |
+
|
46 |
+
if is_torch_xla_available():
|
47 |
+
import torch_xla.core.xla_model as xm
|
48 |
+
|
49 |
+
XLA_AVAILABLE = True
|
50 |
+
else:
|
51 |
+
XLA_AVAILABLE = False
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
55 |
+
|
56 |
+
EXAMPLE_DOC_STRING = """
|
57 |
+
Examples:
|
58 |
+
```py
|
59 |
+
>>> import torch
|
60 |
+
>>> from diffusers import FluxPipeline
|
61 |
+
|
62 |
+
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
|
63 |
+
>>> pipe.to("cuda")
|
64 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
65 |
+
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
66 |
+
>>> # Refer to the pipeline documentation for more details.
|
67 |
+
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
68 |
+
>>> image.save("flux.png")
|
69 |
+
```
|
70 |
+
"""
|
71 |
+
|
72 |
+
import sys
|
73 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')))
|
74 |
+
|
75 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
76 |
+
|
77 |
+
def retrieve_latents(
|
78 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
79 |
+
):
|
80 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
81 |
+
return encoder_output.latent_dist.sample(generator)
|
82 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
83 |
+
return encoder_output.latent_dist.mode()
|
84 |
+
elif hasattr(encoder_output, "latents"):
|
85 |
+
return encoder_output.latents
|
86 |
+
else:
|
87 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
88 |
+
|
89 |
+
|
90 |
+
def calculate_shift(
|
91 |
+
image_seq_len,
|
92 |
+
base_seq_len: int = 256,
|
93 |
+
max_seq_len: int = 4096,
|
94 |
+
base_shift: float = 0.5,
|
95 |
+
max_shift: float = 1.16,
|
96 |
+
):
|
97 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
98 |
+
b = base_shift - m * base_seq_len
|
99 |
+
mu = image_seq_len * m + b
|
100 |
+
return mu
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
104 |
+
def retrieve_timesteps(
|
105 |
+
scheduler,
|
106 |
+
num_inference_steps: Optional[int] = None,
|
107 |
+
device: Optional[Union[str, torch.device]] = None,
|
108 |
+
timesteps: Optional[List[int]] = None,
|
109 |
+
sigmas: Optional[List[float]] = None,
|
110 |
+
**kwargs,
|
111 |
+
):
|
112 |
+
"""
|
113 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
114 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
scheduler (`SchedulerMixin`):
|
118 |
+
The scheduler to get timesteps from.
|
119 |
+
num_inference_steps (`int`):
|
120 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
121 |
+
must be `None`.
|
122 |
+
device (`str` or `torch.device`, *optional*):
|
123 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
124 |
+
timesteps (`List[int]`, *optional*):
|
125 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
126 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
127 |
+
sigmas (`List[float]`, *optional*):
|
128 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
129 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
133 |
+
second element is the number of inference steps.
|
134 |
+
"""
|
135 |
+
if timesteps is not None and sigmas is not None:
|
136 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
137 |
+
if timesteps is not None:
|
138 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
139 |
+
if not accepts_timesteps:
|
140 |
+
raise ValueError(
|
141 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
142 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
143 |
+
)
|
144 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
145 |
+
timesteps = scheduler.timesteps
|
146 |
+
num_inference_steps = len(timesteps)
|
147 |
+
elif sigmas is not None:
|
148 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
149 |
+
if not accept_sigmas:
|
150 |
+
raise ValueError(
|
151 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
152 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
153 |
+
)
|
154 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
155 |
+
timesteps = scheduler.timesteps
|
156 |
+
num_inference_steps = len(timesteps)
|
157 |
+
else:
|
158 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
159 |
+
timesteps = scheduler.timesteps
|
160 |
+
return timesteps, num_inference_steps
|
161 |
+
|
162 |
+
|
163 |
+
class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
164 |
+
r"""
|
165 |
+
The Flux pipeline for text-to-image generation.
|
166 |
+
|
167 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
168 |
+
|
169 |
+
Args:
|
170 |
+
transformer ([`FluxTransformer2DModel`]):
|
171 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
172 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
173 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
174 |
+
vae ([`AutoencoderKL`]):
|
175 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
176 |
+
text_encoder ([`CLIPTextModel`]):
|
177 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
178 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
179 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
180 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
181 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
182 |
+
tokenizer (`CLIPTokenizer`):
|
183 |
+
Tokenizer of class
|
184 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
185 |
+
tokenizer_2 (`T5TokenizerFast`):
|
186 |
+
Second Tokenizer of class
|
187 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
188 |
+
"""
|
189 |
+
|
190 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
191 |
+
_optional_components = []
|
192 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
193 |
+
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
197 |
+
vae: AutoencoderKL,
|
198 |
+
text_encoder: CLIPTextModel,
|
199 |
+
tokenizer: CLIPTokenizer,
|
200 |
+
text_encoder_2: T5EncoderModel,
|
201 |
+
tokenizer_2: T5TokenizerFast,
|
202 |
+
transformer: FluxTransformer2DModel,
|
203 |
+
):
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
self.register_modules(
|
207 |
+
vae=vae,
|
208 |
+
text_encoder=text_encoder,
|
209 |
+
text_encoder_2=text_encoder_2,
|
210 |
+
tokenizer=tokenizer,
|
211 |
+
tokenizer_2=tokenizer_2,
|
212 |
+
transformer=transformer,
|
213 |
+
scheduler=scheduler,
|
214 |
+
)
|
215 |
+
self.vae_scale_factor = (
|
216 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
217 |
+
)
|
218 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
219 |
+
self.tokenizer_max_length = (
|
220 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
221 |
+
)
|
222 |
+
self.default_sample_size = 64
|
223 |
+
|
224 |
+
def _get_t5_prompt_embeds(
|
225 |
+
self,
|
226 |
+
prompt: Union[str, List[str]] = None,
|
227 |
+
num_images_per_prompt: int = 1,
|
228 |
+
max_sequence_length: int = 512,
|
229 |
+
device: Optional[torch.device] = None,
|
230 |
+
dtype: Optional[torch.dtype] = None,
|
231 |
+
):
|
232 |
+
device = device or self._execution_device
|
233 |
+
dtype = dtype or self.text_encoder.dtype
|
234 |
+
|
235 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
236 |
+
batch_size = len(prompt)
|
237 |
+
|
238 |
+
text_inputs = self.tokenizer_2(
|
239 |
+
prompt,
|
240 |
+
padding="max_length",
|
241 |
+
max_length=max_sequence_length,
|
242 |
+
truncation=True,
|
243 |
+
return_length=False,
|
244 |
+
return_overflowing_tokens=False,
|
245 |
+
return_tensors="pt",
|
246 |
+
)
|
247 |
+
text_input_ids = text_inputs.input_ids
|
248 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
249 |
+
|
250 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
251 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
252 |
+
logger.warning(
|
253 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
254 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
255 |
+
)
|
256 |
+
|
257 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
258 |
+
|
259 |
+
dtype = self.text_encoder_2.dtype
|
260 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
261 |
+
|
262 |
+
_, seq_len, _ = prompt_embeds.shape
|
263 |
+
|
264 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
265 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
266 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
267 |
+
|
268 |
+
return prompt_embeds
|
269 |
+
|
270 |
+
def _get_clip_prompt_embeds(
|
271 |
+
self,
|
272 |
+
prompt: Union[str, List[str]],
|
273 |
+
num_images_per_prompt: int = 1,
|
274 |
+
device: Optional[torch.device] = None,
|
275 |
+
):
|
276 |
+
device = device or self._execution_device
|
277 |
+
|
278 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
279 |
+
batch_size = len(prompt)
|
280 |
+
|
281 |
+
text_inputs = self.tokenizer(
|
282 |
+
prompt,
|
283 |
+
padding="max_length",
|
284 |
+
max_length=self.tokenizer_max_length,
|
285 |
+
truncation=True,
|
286 |
+
return_overflowing_tokens=False,
|
287 |
+
return_length=False,
|
288 |
+
return_tensors="pt",
|
289 |
+
)
|
290 |
+
|
291 |
+
text_input_ids = text_inputs.input_ids
|
292 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
293 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
294 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
295 |
+
logger.warning(
|
296 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
297 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
298 |
+
)
|
299 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
300 |
+
|
301 |
+
# Use pooled output of CLIPTextModel
|
302 |
+
prompt_embeds = prompt_embeds.pooler_output
|
303 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
304 |
+
|
305 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
306 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
307 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
308 |
+
|
309 |
+
return prompt_embeds
|
310 |
+
|
311 |
+
def encode_prompt(
|
312 |
+
self,
|
313 |
+
prompt: Union[str, List[str]],
|
314 |
+
prompt_2: Union[str, List[str]],
|
315 |
+
device: Optional[torch.device] = None,
|
316 |
+
num_images_per_prompt: int = 1,
|
317 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
318 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
319 |
+
max_sequence_length: int = 512,
|
320 |
+
lora_scale: Optional[float] = None,
|
321 |
+
):
|
322 |
+
r"""
|
323 |
+
|
324 |
+
Args:
|
325 |
+
prompt (`str` or `List[str]`, *optional*):
|
326 |
+
prompt to be encoded
|
327 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
328 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
329 |
+
used in all text-encoders
|
330 |
+
device: (`torch.device`):
|
331 |
+
torch device
|
332 |
+
num_images_per_prompt (`int`):
|
333 |
+
number of images that should be generated per prompt
|
334 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
335 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
336 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
337 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
338 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
339 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
340 |
+
lora_scale (`float`, *optional*):
|
341 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
342 |
+
"""
|
343 |
+
device = device or self._execution_device
|
344 |
+
|
345 |
+
# set lora scale so that monkey patched LoRA
|
346 |
+
# function of text encoder can correctly access it
|
347 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
348 |
+
self._lora_scale = lora_scale
|
349 |
+
|
350 |
+
# dynamically adjust the LoRA scale
|
351 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
352 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
353 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
354 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
355 |
+
|
356 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
357 |
+
if prompt is not None:
|
358 |
+
batch_size = len(prompt)
|
359 |
+
else:
|
360 |
+
batch_size = prompt_embeds.shape[0]
|
361 |
+
|
362 |
+
if prompt_embeds is None:
|
363 |
+
prompt_2 = prompt_2 or prompt
|
364 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
365 |
+
|
366 |
+
# We only use the pooled prompt output from the CLIPTextModel
|
367 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
368 |
+
prompt=prompt,
|
369 |
+
device=device,
|
370 |
+
num_images_per_prompt=num_images_per_prompt,
|
371 |
+
)
|
372 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
373 |
+
prompt=prompt_2,
|
374 |
+
num_images_per_prompt=num_images_per_prompt,
|
375 |
+
max_sequence_length=max_sequence_length,
|
376 |
+
device=device,
|
377 |
+
)
|
378 |
+
|
379 |
+
if self.text_encoder is not None:
|
380 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
381 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
382 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
383 |
+
|
384 |
+
if self.text_encoder_2 is not None:
|
385 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
386 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
387 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
388 |
+
|
389 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
390 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
391 |
+
# text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
|
392 |
+
|
393 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
394 |
+
|
395 |
+
def encode_prompt_edit(
|
396 |
+
self,
|
397 |
+
prompt: Union[str, List[str]],
|
398 |
+
prompt_2: Union[str, List[str]],
|
399 |
+
negative_prompt: Union[str, List[str]] = None,
|
400 |
+
negative_prompt_2: Union[str, List[str]] = None,
|
401 |
+
device: Optional[torch.device] = None,
|
402 |
+
num_images_per_prompt: int = 1,
|
403 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
404 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
405 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
406 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
407 |
+
max_sequence_length: int = 512,
|
408 |
+
lora_scale: Optional[float] = None,
|
409 |
+
do_true_cfg: bool = False,
|
410 |
+
):
|
411 |
+
device = device or self._execution_device
|
412 |
+
|
413 |
+
# Set LoRA scale if applicable
|
414 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
415 |
+
self._lora_scale = lora_scale
|
416 |
+
|
417 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
418 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
419 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
420 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
421 |
+
|
422 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
423 |
+
batch_size = len(prompt)
|
424 |
+
|
425 |
+
if do_true_cfg and negative_prompt is not None:
|
426 |
+
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
427 |
+
negative_batch_size = len(negative_prompt)
|
428 |
+
|
429 |
+
if negative_batch_size != batch_size:
|
430 |
+
raise ValueError(
|
431 |
+
f"Negative prompt batch size ({negative_batch_size}) does not match prompt batch size ({batch_size})"
|
432 |
+
)
|
433 |
+
|
434 |
+
# Concatenate prompts
|
435 |
+
prompts = prompt + negative_prompt
|
436 |
+
prompts_2 = (
|
437 |
+
prompt_2 + negative_prompt_2 if prompt_2 is not None and negative_prompt_2 is not None else None
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
prompts = prompt
|
441 |
+
prompts_2 = prompt_2
|
442 |
+
|
443 |
+
if prompt_embeds is None:
|
444 |
+
if prompts_2 is None:
|
445 |
+
prompts_2 = prompts
|
446 |
+
|
447 |
+
# Get pooled prompt embeddings from CLIPTextModel
|
448 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
449 |
+
prompt=prompts,
|
450 |
+
device=device,
|
451 |
+
num_images_per_prompt=num_images_per_prompt,
|
452 |
+
)
|
453 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
454 |
+
prompt=prompts_2,
|
455 |
+
num_images_per_prompt=num_images_per_prompt,
|
456 |
+
max_sequence_length=max_sequence_length,
|
457 |
+
device=device,
|
458 |
+
)
|
459 |
+
|
460 |
+
if do_true_cfg and negative_prompt is not None:
|
461 |
+
# Split embeddings back into positive and negative parts
|
462 |
+
total_batch_size = batch_size * num_images_per_prompt
|
463 |
+
positive_indices = slice(0, total_batch_size)
|
464 |
+
negative_indices = slice(total_batch_size, 2 * total_batch_size)
|
465 |
+
|
466 |
+
positive_pooled_prompt_embeds = pooled_prompt_embeds[positive_indices]
|
467 |
+
negative_pooled_prompt_embeds = pooled_prompt_embeds[negative_indices]
|
468 |
+
|
469 |
+
positive_prompt_embeds = prompt_embeds[positive_indices]
|
470 |
+
negative_prompt_embeds = prompt_embeds[negative_indices]
|
471 |
+
|
472 |
+
pooled_prompt_embeds = positive_pooled_prompt_embeds
|
473 |
+
prompt_embeds = positive_prompt_embeds
|
474 |
+
|
475 |
+
# Unscale LoRA layers
|
476 |
+
if self.text_encoder is not None:
|
477 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
478 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
479 |
+
|
480 |
+
if self.text_encoder_2 is not None:
|
481 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
482 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
483 |
+
|
484 |
+
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
485 |
+
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
486 |
+
|
487 |
+
if do_true_cfg and negative_prompt is not None:
|
488 |
+
return (
|
489 |
+
prompt_embeds,
|
490 |
+
pooled_prompt_embeds,
|
491 |
+
text_ids,
|
492 |
+
negative_prompt_embeds,
|
493 |
+
negative_pooled_prompt_embeds,
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids, None, None
|
497 |
+
|
498 |
+
|
499 |
+
def check_inputs(
|
500 |
+
self,
|
501 |
+
prompt,
|
502 |
+
prompt_2,
|
503 |
+
height,
|
504 |
+
width,
|
505 |
+
prompt_embeds=None,
|
506 |
+
pooled_prompt_embeds=None,
|
507 |
+
callback_on_step_end_tensor_inputs=None,
|
508 |
+
max_sequence_length=None,
|
509 |
+
):
|
510 |
+
if height % 8 != 0 or width % 8 != 0:
|
511 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
512 |
+
|
513 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
514 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
515 |
+
):
|
516 |
+
raise ValueError(
|
517 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
518 |
+
)
|
519 |
+
|
520 |
+
if prompt is not None and prompt_embeds is not None:
|
521 |
+
raise ValueError(
|
522 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
523 |
+
" only forward one of the two."
|
524 |
+
)
|
525 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
526 |
+
raise ValueError(
|
527 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
528 |
+
" only forward one of the two."
|
529 |
+
)
|
530 |
+
elif prompt is None and prompt_embeds is None:
|
531 |
+
raise ValueError(
|
532 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
533 |
+
)
|
534 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
535 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
536 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
537 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
538 |
+
|
539 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
540 |
+
raise ValueError(
|
541 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
542 |
+
)
|
543 |
+
|
544 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
545 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
546 |
+
|
547 |
+
@staticmethod
|
548 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
549 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
550 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
551 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
552 |
+
|
553 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
554 |
+
|
555 |
+
# latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
556 |
+
latent_image_ids = latent_image_ids.reshape(
|
557 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
558 |
+
)
|
559 |
+
|
560 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
561 |
+
|
562 |
+
@staticmethod
|
563 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
564 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
565 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
566 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
567 |
+
|
568 |
+
return latents
|
569 |
+
|
570 |
+
@staticmethod
|
571 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
572 |
+
batch_size, num_patches, channels = latents.shape
|
573 |
+
|
574 |
+
height = height // vae_scale_factor
|
575 |
+
width = width // vae_scale_factor
|
576 |
+
|
577 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
578 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
579 |
+
|
580 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
581 |
+
|
582 |
+
return latents
|
583 |
+
|
584 |
+
def prepare_latents(
|
585 |
+
self,
|
586 |
+
batch_size,
|
587 |
+
num_channels_latents,
|
588 |
+
height,
|
589 |
+
width,
|
590 |
+
dtype,
|
591 |
+
device,
|
592 |
+
generator,
|
593 |
+
latents=None,
|
594 |
+
):
|
595 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
596 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
597 |
+
|
598 |
+
shape = (batch_size, num_channels_latents, height, width)
|
599 |
+
|
600 |
+
if latents is not None:
|
601 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
602 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
603 |
+
|
604 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
605 |
+
raise ValueError(
|
606 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
607 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
608 |
+
)
|
609 |
+
|
610 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
611 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
612 |
+
|
613 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
614 |
+
|
615 |
+
return latents, latent_image_ids
|
616 |
+
|
617 |
+
@property
|
618 |
+
def guidance_scale(self):
|
619 |
+
return self._guidance_scale
|
620 |
+
|
621 |
+
@property
|
622 |
+
def joint_attention_kwargs(self):
|
623 |
+
return self._joint_attention_kwargs
|
624 |
+
|
625 |
+
@property
|
626 |
+
def num_timesteps(self):
|
627 |
+
return self._num_timesteps
|
628 |
+
|
629 |
+
@property
|
630 |
+
def interrupt(self):
|
631 |
+
return self._interrupt
|
632 |
+
|
633 |
+
|
634 |
+
def prepare_mask_latents(
|
635 |
+
self,
|
636 |
+
mask,
|
637 |
+
masked_image,
|
638 |
+
batch_size,
|
639 |
+
num_channels_latents,
|
640 |
+
num_images_per_prompt,
|
641 |
+
height,
|
642 |
+
width,
|
643 |
+
dtype,
|
644 |
+
device,
|
645 |
+
generator,
|
646 |
+
):
|
647 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
648 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
649 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
650 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
651 |
+
# and half precision
|
652 |
+
mask = torch.nn.functional.interpolate(mask, size=(height, width))
|
653 |
+
mask = mask.to(device=device, dtype=dtype)
|
654 |
+
|
655 |
+
batch_size = batch_size * num_images_per_prompt
|
656 |
+
|
657 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
658 |
+
|
659 |
+
if masked_image.shape[1] == 16:
|
660 |
+
masked_image_latents = masked_image
|
661 |
+
else:
|
662 |
+
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
|
663 |
+
|
664 |
+
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
665 |
+
|
666 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
667 |
+
if mask.shape[0] < batch_size:
|
668 |
+
if not batch_size % mask.shape[0] == 0:
|
669 |
+
raise ValueError(
|
670 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
671 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
672 |
+
" of masks that you pass is divisible by the total requested batch size."
|
673 |
+
)
|
674 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
675 |
+
if masked_image_latents.shape[0] < batch_size:
|
676 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
677 |
+
raise ValueError(
|
678 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
679 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
680 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
681 |
+
)
|
682 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
683 |
+
|
684 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
685 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
686 |
+
|
687 |
+
masked_image_latents = self._pack_latents(
|
688 |
+
masked_image_latents,
|
689 |
+
batch_size,
|
690 |
+
num_channels_latents,
|
691 |
+
height,
|
692 |
+
width,
|
693 |
+
)
|
694 |
+
mask = self._pack_latents(
|
695 |
+
mask.repeat(1, num_channels_latents, 1, 1),
|
696 |
+
batch_size,
|
697 |
+
num_channels_latents,
|
698 |
+
height,
|
699 |
+
width,
|
700 |
+
)
|
701 |
+
|
702 |
+
return mask, masked_image_latents
|
703 |
+
|
704 |
+
@torch.no_grad()
|
705 |
+
def inpaint(
|
706 |
+
self,
|
707 |
+
prompt: Union[str, List[str]] = None,
|
708 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
709 |
+
height: Optional[int] = None,
|
710 |
+
width: Optional[int] = None,
|
711 |
+
num_inference_steps: int = 28,
|
712 |
+
timesteps: List[int] = None,
|
713 |
+
guidance_scale: float = 7.0,
|
714 |
+
num_images_per_prompt: Optional[int] = 1,
|
715 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
716 |
+
latents: Optional[torch.FloatTensor] = None,
|
717 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
718 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
719 |
+
output_type: Optional[str] = "pil",
|
720 |
+
return_dict: bool = True,
|
721 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
722 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
723 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
724 |
+
max_sequence_length: int = 512,
|
725 |
+
optimization_steps: int = 3,
|
726 |
+
learning_rate: float = 0.8,
|
727 |
+
max_steps: int = 5,
|
728 |
+
input_image = None,
|
729 |
+
save_masked_image = False,
|
730 |
+
output_path="",
|
731 |
+
mask_image = None,
|
732 |
+
):
|
733 |
+
|
734 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
735 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
736 |
+
|
737 |
+
# 1. Check inputs. Raise error if not correct
|
738 |
+
self.check_inputs(
|
739 |
+
prompt,
|
740 |
+
prompt_2,
|
741 |
+
height,
|
742 |
+
width,
|
743 |
+
prompt_embeds=prompt_embeds,
|
744 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
745 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
746 |
+
max_sequence_length=max_sequence_length,
|
747 |
+
)
|
748 |
+
|
749 |
+
self._guidance_scale = guidance_scale
|
750 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
751 |
+
self._interrupt = False
|
752 |
+
|
753 |
+
# 2. Define call parameters
|
754 |
+
if prompt is not None and isinstance(prompt, str):
|
755 |
+
batch_size = 1
|
756 |
+
elif prompt is not None and isinstance(prompt, list):
|
757 |
+
batch_size = len(prompt)
|
758 |
+
else:
|
759 |
+
batch_size = prompt_embeds.shape[0]
|
760 |
+
|
761 |
+
device = self._execution_device
|
762 |
+
|
763 |
+
lora_scale = (
|
764 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
765 |
+
)
|
766 |
+
(
|
767 |
+
prompt_embeds,
|
768 |
+
pooled_prompt_embeds,
|
769 |
+
text_ids,
|
770 |
+
) = self.encode_prompt(
|
771 |
+
prompt=prompt,
|
772 |
+
prompt_2=prompt_2,
|
773 |
+
prompt_embeds=prompt_embeds,
|
774 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
775 |
+
device=device,
|
776 |
+
num_images_per_prompt=num_images_per_prompt,
|
777 |
+
max_sequence_length=max_sequence_length,
|
778 |
+
lora_scale=lora_scale,
|
779 |
+
)
|
780 |
+
|
781 |
+
# 4. Prepare latent variables
|
782 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
783 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
784 |
+
batch_size * num_images_per_prompt,
|
785 |
+
num_channels_latents,
|
786 |
+
height,
|
787 |
+
width,
|
788 |
+
prompt_embeds.dtype,
|
789 |
+
device,
|
790 |
+
generator,
|
791 |
+
latents,
|
792 |
+
)
|
793 |
+
|
794 |
+
# 5. Prepare timesteps
|
795 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
796 |
+
image_seq_len = random_latents.shape[1]
|
797 |
+
mu = calculate_shift(
|
798 |
+
image_seq_len,
|
799 |
+
self.scheduler.config.base_image_seq_len,
|
800 |
+
self.scheduler.config.max_image_seq_len,
|
801 |
+
self.scheduler.config.base_shift,
|
802 |
+
self.scheduler.config.max_shift,
|
803 |
+
)
|
804 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
805 |
+
self.scheduler,
|
806 |
+
num_inference_steps,
|
807 |
+
device,
|
808 |
+
timesteps,
|
809 |
+
sigmas,
|
810 |
+
mu=mu,
|
811 |
+
)
|
812 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
813 |
+
self._num_timesteps = len(timesteps)
|
814 |
+
|
815 |
+
# 4. Preprocess image
|
816 |
+
# Preprocess mask image
|
817 |
+
mask_image = mask_image.convert("L")
|
818 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
819 |
+
mask = TF.Resize(input_image.size, interpolation=TF.InterpolationMode.NEAREST)(mask)
|
820 |
+
mask = (mask > 0.5)
|
821 |
+
mask = ~mask
|
822 |
+
|
823 |
+
# # Convert input image to tensor and apply mask
|
824 |
+
# input_image = TF.ToTensor()(input_image).to(device=device, dtype=self.transformer.dtype)
|
825 |
+
# input_image = input_image * mask.float().expand_as(input_image)
|
826 |
+
# input_image = TF.ToPILImage()(input_image.cpu())
|
827 |
+
|
828 |
+
image = self.image_processor.preprocess(input_image)
|
829 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
830 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
831 |
+
|
832 |
+
|
833 |
+
h, w = latents.shape[2], latents.shape[3]
|
834 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
835 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
836 |
+
|
837 |
+
# Slightly dilate the mask to increase coverage
|
838 |
+
kernel_size = 1 # Decreased from 3 to 2
|
839 |
+
kernel = torch.ones((1, 1, kernel_size, kernel_size), device=device)
|
840 |
+
mask = torch.nn.functional.conv2d(
|
841 |
+
mask.unsqueeze(0),
|
842 |
+
kernel,
|
843 |
+
padding=0
|
844 |
+
).squeeze(0)
|
845 |
+
mask = torch.clamp(mask, 0, 1)
|
846 |
+
|
847 |
+
mask = (mask > 0.1).float()
|
848 |
+
|
849 |
+
# Remove extra channel dimension if present
|
850 |
+
if len(mask.shape) == 3 and mask.shape[0] == 1:
|
851 |
+
mask = mask.squeeze(0)
|
852 |
+
|
853 |
+
bool_mask = mask.bool().unsqueeze(0).unsqueeze(0).expand_as(latents)
|
854 |
+
mask=~bool_mask
|
855 |
+
|
856 |
+
print(mask.shape, latents.shape)
|
857 |
+
|
858 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
859 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
860 |
+
|
861 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
862 |
+
|
863 |
+
# Decode and save the masked image
|
864 |
+
if save_masked_image:
|
865 |
+
with torch.no_grad():
|
866 |
+
save_masked_latents = self._unpack_latents(masked_latents, 1024, 1024, self.vae_scale_factor)
|
867 |
+
save_masked_latents = (save_masked_latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
868 |
+
mask_image = self.vae.decode(save_masked_latents, return_dict=False)[0]
|
869 |
+
mask_image = self.image_processor.postprocess(mask_image, output_type="pil")
|
870 |
+
mask_image_path = output_path.replace(".png", "_masked.png")
|
871 |
+
mask_image[0].save(mask_image_path)
|
872 |
+
|
873 |
+
|
874 |
+
# initialize the random noise for denoising
|
875 |
+
latents = random_latents.clone().detach()
|
876 |
+
|
877 |
+
self.vae = self.vae.to(torch.float32)
|
878 |
+
|
879 |
+
# 9. Denoising loop
|
880 |
+
self.transformer.eval()
|
881 |
+
self.vae.eval()
|
882 |
+
|
883 |
+
# 6. Denoising loop
|
884 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
885 |
+
for i, t in enumerate(timesteps):
|
886 |
+
if self.interrupt:
|
887 |
+
continue
|
888 |
+
|
889 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
890 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
891 |
+
|
892 |
+
# handle guidance
|
893 |
+
if self.transformer.config.guidance_embeds:
|
894 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
895 |
+
guidance = guidance.expand(latents.shape[0])
|
896 |
+
else:
|
897 |
+
guidance = None
|
898 |
+
|
899 |
+
noise_pred = self.transformer(
|
900 |
+
hidden_states=latents,
|
901 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
902 |
+
timestep=timestep / 1000,
|
903 |
+
guidance=guidance,
|
904 |
+
pooled_projections=pooled_prompt_embeds,
|
905 |
+
encoder_hidden_states=prompt_embeds,
|
906 |
+
txt_ids=text_ids,
|
907 |
+
img_ids=latent_image_ids,
|
908 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
909 |
+
return_dict=False,
|
910 |
+
)[0]
|
911 |
+
|
912 |
+
# compute the previous noisy sample x_t -> x_t-1
|
913 |
+
latents_dtype = latents.dtype
|
914 |
+
|
915 |
+
# perform CG
|
916 |
+
if i < max_steps:
|
917 |
+
opt_latents = latents.detach().clone()
|
918 |
+
with torch.enable_grad():
|
919 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
920 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
921 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
922 |
+
|
923 |
+
for _ in range(optimization_steps):
|
924 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
925 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
926 |
+
|
927 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
928 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
929 |
+
opt_latents = opt_latents - learning_rate * grad
|
930 |
+
|
931 |
+
latents = opt_latents.detach().clone()
|
932 |
+
|
933 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
934 |
+
|
935 |
+
if latents.dtype != latents_dtype:
|
936 |
+
if torch.backends.mps.is_available():
|
937 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
938 |
+
latents = latents.to(latents_dtype)
|
939 |
+
|
940 |
+
if callback_on_step_end is not None:
|
941 |
+
callback_kwargs = {}
|
942 |
+
for k in callback_on_step_end_tensor_inputs:
|
943 |
+
callback_kwargs[k] = locals()[k]
|
944 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
945 |
+
|
946 |
+
latents = callback_outputs.pop("latents", latents)
|
947 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
948 |
+
|
949 |
+
# call the callback, if provided
|
950 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
951 |
+
progress_bar.update()
|
952 |
+
|
953 |
+
if XLA_AVAILABLE:
|
954 |
+
xm.mark_step()
|
955 |
+
|
956 |
+
if output_type == "latent":
|
957 |
+
image = latents
|
958 |
+
|
959 |
+
else:
|
960 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
961 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
962 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
963 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
964 |
+
|
965 |
+
# Offload all models
|
966 |
+
self.maybe_free_model_hooks()
|
967 |
+
|
968 |
+
if not return_dict:
|
969 |
+
return (image,)
|
970 |
+
|
971 |
+
return FluxPipelineOutput(images=image)
|
972 |
+
|
973 |
+
def get_diff_image(self, latents):
|
974 |
+
latents = self._unpack_latents(latents, 1024, 1024, self.vae_scale_factor)
|
975 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
976 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
977 |
+
image = self.image_processor.postprocess(image, output_type="pt")
|
978 |
+
return image
|
979 |
+
|
980 |
+
def load_and_preprocess_image(self, image_path, custom_image_processor, device):
|
981 |
+
from diffusers.utils import load_image
|
982 |
+
img = load_image(image_path)
|
983 |
+
img = img.resize((512, 512))
|
984 |
+
return custom_image_processor(img).unsqueeze(0).to(device)
|
985 |
+
|
986 |
+
|
987 |
+
@torch.no_grad()
|
988 |
+
def edit(
|
989 |
+
self,
|
990 |
+
prompt: Union[str, List[str]] = None,
|
991 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
992 |
+
negative_prompt: Union[str, List[str]] = None, #
|
993 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
994 |
+
true_cfg: float = 1.0, #
|
995 |
+
height: Optional[int] = None,
|
996 |
+
width: Optional[int] = None,
|
997 |
+
num_inference_steps: int = 28,
|
998 |
+
timesteps: List[int] = None,
|
999 |
+
guidance_scale: float = 3.5,
|
1000 |
+
num_images_per_prompt: Optional[int] = 1,
|
1001 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1002 |
+
latents: Optional[torch.FloatTensor] = None,
|
1003 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1004 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1005 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1006 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1007 |
+
output_type: Optional[str] = "pil",
|
1008 |
+
return_dict: bool = True,
|
1009 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1010 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1011 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1012 |
+
max_sequence_length: int = 512,
|
1013 |
+
optimization_steps: int = 3,
|
1014 |
+
learning_rate: float = 0.8,
|
1015 |
+
max_steps: int = 5,
|
1016 |
+
input_image = None,
|
1017 |
+
save_masked_image = False,
|
1018 |
+
output_path="",
|
1019 |
+
mask_image=None,
|
1020 |
+
source_steps=1,
|
1021 |
+
):
|
1022 |
+
|
1023 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1024 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1025 |
+
|
1026 |
+
# 1. Check inputs. Raise error if not correct
|
1027 |
+
self.check_inputs(
|
1028 |
+
prompt,
|
1029 |
+
prompt_2,
|
1030 |
+
height,
|
1031 |
+
width,
|
1032 |
+
# negative_prompt=negative_prompt,
|
1033 |
+
# negative_prompt_2=negative_prompt_2,
|
1034 |
+
prompt_embeds=prompt_embeds,
|
1035 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
1036 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1037 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1038 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1039 |
+
max_sequence_length=max_sequence_length,
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
self._guidance_scale = guidance_scale
|
1043 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
1044 |
+
self._interrupt = False
|
1045 |
+
|
1046 |
+
# 2. Define call parameters
|
1047 |
+
if prompt is not None and isinstance(prompt, str):
|
1048 |
+
batch_size = 1
|
1049 |
+
elif prompt is not None and isinstance(prompt, list):
|
1050 |
+
batch_size = len(prompt)
|
1051 |
+
else:
|
1052 |
+
batch_size = prompt_embeds.shape[0]
|
1053 |
+
|
1054 |
+
device = self._execution_device
|
1055 |
+
|
1056 |
+
lora_scale = (
|
1057 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
1058 |
+
)
|
1059 |
+
do_true_cfg = true_cfg > 1 and negative_prompt is not None
|
1060 |
+
(
|
1061 |
+
prompt_embeds,
|
1062 |
+
pooled_prompt_embeds,
|
1063 |
+
text_ids,
|
1064 |
+
negative_prompt_embeds,
|
1065 |
+
negative_pooled_prompt_embeds,
|
1066 |
+
) = self.encode_prompt_edit(
|
1067 |
+
prompt=prompt,
|
1068 |
+
prompt_2=prompt_2,
|
1069 |
+
negative_prompt=negative_prompt,
|
1070 |
+
negative_prompt_2=negative_prompt_2,
|
1071 |
+
prompt_embeds=prompt_embeds,
|
1072 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1073 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1074 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1075 |
+
device=device,
|
1076 |
+
num_images_per_prompt=num_images_per_prompt,
|
1077 |
+
max_sequence_length=max_sequence_length,
|
1078 |
+
lora_scale=lora_scale,
|
1079 |
+
do_true_cfg=do_true_cfg,
|
1080 |
+
)
|
1081 |
+
# text_ids = text_ids.repeat(batch_size, 1, 1)
|
1082 |
+
|
1083 |
+
if do_true_cfg:
|
1084 |
+
# Concatenate embeddings
|
1085 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1086 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
1087 |
+
|
1088 |
+
# 4. Prepare latent variables
|
1089 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
1090 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
1091 |
+
batch_size * num_images_per_prompt,
|
1092 |
+
num_channels_latents,
|
1093 |
+
height,
|
1094 |
+
width,
|
1095 |
+
prompt_embeds.dtype,
|
1096 |
+
device,
|
1097 |
+
generator,
|
1098 |
+
latents,
|
1099 |
+
)
|
1100 |
+
# latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1)
|
1101 |
+
|
1102 |
+
# 5. Prepare timesteps
|
1103 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
1104 |
+
image_seq_len = random_latents.shape[1]
|
1105 |
+
mu = calculate_shift(
|
1106 |
+
image_seq_len,
|
1107 |
+
self.scheduler.config.base_image_seq_len,
|
1108 |
+
self.scheduler.config.max_image_seq_len,
|
1109 |
+
self.scheduler.config.base_shift,
|
1110 |
+
self.scheduler.config.max_shift,
|
1111 |
+
)
|
1112 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1113 |
+
self.scheduler,
|
1114 |
+
num_inference_steps,
|
1115 |
+
device,
|
1116 |
+
timesteps,
|
1117 |
+
sigmas,
|
1118 |
+
mu=mu,
|
1119 |
+
)
|
1120 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1121 |
+
self._num_timesteps = len(timesteps)
|
1122 |
+
|
1123 |
+
# 4. Preprocess image
|
1124 |
+
image = self.image_processor.preprocess(input_image)
|
1125 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
1126 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
1127 |
+
|
1128 |
+
|
1129 |
+
# Convert PIL image to tensor
|
1130 |
+
if mask_image:
|
1131 |
+
from torchvision import transforms as TF
|
1132 |
+
|
1133 |
+
h, w = latents.shape[2], latents.shape[3]
|
1134 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
1135 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
1136 |
+
mask = (mask > 0.5).float()
|
1137 |
+
mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions
|
1138 |
+
else:
|
1139 |
+
mask = torch.ones_like(latents).to(device=device)
|
1140 |
+
|
1141 |
+
print(mask.shape, latents.shape)
|
1142 |
+
|
1143 |
+
bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents)
|
1144 |
+
mask=(1-bool_mask*1.0).to(latents.dtype)
|
1145 |
+
|
1146 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
1147 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1148 |
+
|
1149 |
+
source_latents = (latents).clone().detach() # apply the mask and get gt_latents
|
1150 |
+
source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1151 |
+
|
1152 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1153 |
+
|
1154 |
+
# initialize the random noise for denoising
|
1155 |
+
latents = random_latents.clone().detach()
|
1156 |
+
|
1157 |
+
self.vae = self.vae.to(torch.float32)
|
1158 |
+
|
1159 |
+
# 9. Denoising loop
|
1160 |
+
self.transformer.eval()
|
1161 |
+
self.vae.eval()
|
1162 |
+
|
1163 |
+
# 6. Denoising loop
|
1164 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1165 |
+
for i, t in enumerate(timesteps):
|
1166 |
+
if self.interrupt:
|
1167 |
+
continue
|
1168 |
+
|
1169 |
+
latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents
|
1170 |
+
|
1171 |
+
# handle guidance
|
1172 |
+
if self.transformer.config.guidance_embeds:
|
1173 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
1174 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
1175 |
+
else:
|
1176 |
+
guidance = None
|
1177 |
+
|
1178 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1179 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
1180 |
+
|
1181 |
+
noise_pred = self.transformer(
|
1182 |
+
hidden_states=latent_model_input,
|
1183 |
+
timestep=timestep / 1000,
|
1184 |
+
guidance=guidance,
|
1185 |
+
pooled_projections=pooled_prompt_embeds,
|
1186 |
+
encoder_hidden_states=prompt_embeds,
|
1187 |
+
txt_ids=text_ids,
|
1188 |
+
img_ids=latent_image_ids,
|
1189 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1190 |
+
return_dict=False,
|
1191 |
+
)[0]
|
1192 |
+
|
1193 |
+
if do_true_cfg:
|
1194 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
1195 |
+
# noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred)
|
1196 |
+
noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg
|
1197 |
+
# else:
|
1198 |
+
# neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
1199 |
+
|
1200 |
+
# perform CG
|
1201 |
+
if i < max_steps:
|
1202 |
+
opt_latents = latents.detach().clone()
|
1203 |
+
with torch.enable_grad():
|
1204 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
1205 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
1206 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
1207 |
+
|
1208 |
+
for _ in range(optimization_steps):
|
1209 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
1210 |
+
if i < source_steps:
|
1211 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean()
|
1212 |
+
else:
|
1213 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
1214 |
+
|
1215 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
1216 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
1217 |
+
opt_latents = opt_latents - learning_rate * grad
|
1218 |
+
|
1219 |
+
latents = opt_latents.detach().clone()
|
1220 |
+
|
1221 |
+
|
1222 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1223 |
+
latents_dtype = latents.dtype
|
1224 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1225 |
+
|
1226 |
+
if latents.dtype != latents_dtype:
|
1227 |
+
if torch.backends.mps.is_available():
|
1228 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1229 |
+
latents = latents.to(latents_dtype)
|
1230 |
+
|
1231 |
+
if callback_on_step_end is not None:
|
1232 |
+
callback_kwargs = {}
|
1233 |
+
for k in callback_on_step_end_tensor_inputs:
|
1234 |
+
callback_kwargs[k] = locals()[k]
|
1235 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1236 |
+
|
1237 |
+
latents = callback_outputs.pop("latents", latents)
|
1238 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1239 |
+
|
1240 |
+
# call the callback, if provided
|
1241 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1242 |
+
progress_bar.update()
|
1243 |
+
|
1244 |
+
if XLA_AVAILABLE:
|
1245 |
+
xm.mark_step()
|
1246 |
+
|
1247 |
+
if output_type == "latent":
|
1248 |
+
image = latents
|
1249 |
+
|
1250 |
+
else:
|
1251 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1252 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1253 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
1254 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1255 |
+
|
1256 |
+
# Offload all models
|
1257 |
+
self.maybe_free_model_hooks()
|
1258 |
+
|
1259 |
+
if not return_dict:
|
1260 |
+
return (image,)
|
1261 |
+
|
1262 |
+
return FluxPipelineOutput(images=image)
|
1263 |
+
|
1264 |
+
@torch.no_grad()
|
1265 |
+
def edit2(
|
1266 |
+
self,
|
1267 |
+
prompt: Union[str, List[str]] = None,
|
1268 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1269 |
+
negative_prompt: Union[str, List[str]] = None, #
|
1270 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1271 |
+
true_cfg: float = 1.0, #
|
1272 |
+
height: Optional[int] = None,
|
1273 |
+
width: Optional[int] = None,
|
1274 |
+
num_inference_steps: int = 28,
|
1275 |
+
timesteps: List[int] = None,
|
1276 |
+
guidance_scale: float = 3.5,
|
1277 |
+
num_images_per_prompt: Optional[int] = 1,
|
1278 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1279 |
+
latents: Optional[torch.FloatTensor] = None,
|
1280 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1281 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1282 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1283 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1284 |
+
output_type: Optional[str] = "pil",
|
1285 |
+
return_dict: bool = True,
|
1286 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1287 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1288 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1289 |
+
max_sequence_length: int = 512,
|
1290 |
+
optimization_steps: int = 3,
|
1291 |
+
learning_rate: float = 0.8,
|
1292 |
+
max_steps: int = 5,
|
1293 |
+
input_image = None,
|
1294 |
+
save_masked_image = False,
|
1295 |
+
output_path="",
|
1296 |
+
mask_image=None,
|
1297 |
+
source_steps=1,
|
1298 |
+
):
|
1299 |
+
r"""
|
1300 |
+
Function invoked when calling the pipeline for generation.
|
1301 |
+
|
1302 |
+
Args:
|
1303 |
+
prompt (`str` or `List[str]`, *optional*):
|
1304 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1305 |
+
instead.
|
1306 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1307 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1308 |
+
will be used instead
|
1309 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1310 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1311 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1312 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1313 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1314 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1315 |
+
expense of slower inference.
|
1316 |
+
timesteps (`List[int]`, *optional*):
|
1317 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1318 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1319 |
+
passed will be used. Must be in descending order.
|
1320 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
1321 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1322 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1323 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1324 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1325 |
+
usually at the expense of lower image quality.
|
1326 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1327 |
+
The number of images to generate per prompt.
|
1328 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1329 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1330 |
+
to make generation deterministic.
|
1331 |
+
latents (`torch.FloatTensor`, *optional*):
|
1332 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1333 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1334 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1335 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1336 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1337 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1338 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1339 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1340 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1341 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1342 |
+
The output format of the generate image. Choose between
|
1343 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1344 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1345 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
1346 |
+
joint_attention_kwargs (`dict`, *optional*):
|
1347 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1348 |
+
`self.processor` in
|
1349 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1350 |
+
callback_on_step_end (`Callable`, *optional*):
|
1351 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1352 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1353 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1354 |
+
`callback_on_step_end_tensor_inputs`.
|
1355 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1356 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1357 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1358 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1359 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
1360 |
+
|
1361 |
+
Examples:
|
1362 |
+
|
1363 |
+
Returns:
|
1364 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
1365 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
1366 |
+
images.
|
1367 |
+
"""
|
1368 |
+
|
1369 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1370 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1371 |
+
|
1372 |
+
# 1. Check inputs. Raise error if not correct
|
1373 |
+
self.check_inputs(
|
1374 |
+
prompt,
|
1375 |
+
prompt_2,
|
1376 |
+
height,
|
1377 |
+
width,
|
1378 |
+
# negative_prompt=negative_prompt,
|
1379 |
+
# negative_prompt_2=negative_prompt_2,
|
1380 |
+
prompt_embeds=prompt_embeds,
|
1381 |
+
# negative_prompt_embeds=negative_prompt_embeds,
|
1382 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1383 |
+
# negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1384 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1385 |
+
max_sequence_length=max_sequence_length,
|
1386 |
+
)
|
1387 |
+
|
1388 |
+
self._guidance_scale = guidance_scale
|
1389 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
1390 |
+
self._interrupt = False
|
1391 |
+
|
1392 |
+
# 2. Define call parameters
|
1393 |
+
if prompt is not None and isinstance(prompt, str):
|
1394 |
+
batch_size = 1
|
1395 |
+
elif prompt is not None and isinstance(prompt, list):
|
1396 |
+
batch_size = len(prompt)
|
1397 |
+
else:
|
1398 |
+
batch_size = prompt_embeds.shape[0]
|
1399 |
+
|
1400 |
+
device = self._execution_device
|
1401 |
+
|
1402 |
+
lora_scale = (
|
1403 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
1404 |
+
)
|
1405 |
+
do_true_cfg = true_cfg > 1 and negative_prompt is not None
|
1406 |
+
(
|
1407 |
+
prompt_embeds,
|
1408 |
+
pooled_prompt_embeds,
|
1409 |
+
text_ids,
|
1410 |
+
negative_prompt_embeds,
|
1411 |
+
negative_pooled_prompt_embeds,
|
1412 |
+
) = self.encode_prompt_edit(
|
1413 |
+
prompt=prompt,
|
1414 |
+
prompt_2=prompt_2,
|
1415 |
+
negative_prompt=negative_prompt,
|
1416 |
+
negative_prompt_2=negative_prompt_2,
|
1417 |
+
prompt_embeds=prompt_embeds,
|
1418 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1419 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1420 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1421 |
+
device=device,
|
1422 |
+
num_images_per_prompt=num_images_per_prompt,
|
1423 |
+
max_sequence_length=max_sequence_length,
|
1424 |
+
lora_scale=lora_scale,
|
1425 |
+
do_true_cfg=do_true_cfg,
|
1426 |
+
)
|
1427 |
+
# text_ids = text_ids.repeat(batch_size, 1, 1)
|
1428 |
+
|
1429 |
+
if do_true_cfg:
|
1430 |
+
# Concatenate embeddings
|
1431 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1432 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
1433 |
+
|
1434 |
+
# 4. Prepare latent variables
|
1435 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
1436 |
+
random_latents, latent_image_ids = self.prepare_latents(
|
1437 |
+
batch_size * num_images_per_prompt,
|
1438 |
+
num_channels_latents,
|
1439 |
+
height,
|
1440 |
+
width,
|
1441 |
+
prompt_embeds.dtype,
|
1442 |
+
device,
|
1443 |
+
generator,
|
1444 |
+
latents,
|
1445 |
+
)
|
1446 |
+
# latent_image_ids = latent_image_ids.repeat(batch_size, 1, 1)
|
1447 |
+
|
1448 |
+
# 5. Prepare timesteps
|
1449 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
1450 |
+
image_seq_len = random_latents.shape[1]
|
1451 |
+
mu = calculate_shift(
|
1452 |
+
image_seq_len,
|
1453 |
+
self.scheduler.config.base_image_seq_len,
|
1454 |
+
self.scheduler.config.max_image_seq_len,
|
1455 |
+
self.scheduler.config.base_shift,
|
1456 |
+
self.scheduler.config.max_shift,
|
1457 |
+
)
|
1458 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1459 |
+
self.scheduler,
|
1460 |
+
num_inference_steps,
|
1461 |
+
device,
|
1462 |
+
timesteps,
|
1463 |
+
sigmas,
|
1464 |
+
mu=mu,
|
1465 |
+
)
|
1466 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1467 |
+
self._num_timesteps = len(timesteps)
|
1468 |
+
|
1469 |
+
# 4. Preprocess image
|
1470 |
+
image = self.image_processor.preprocess(input_image)
|
1471 |
+
image = image.to(device=device, dtype=self.transformer.dtype)
|
1472 |
+
latents = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor
|
1473 |
+
|
1474 |
+
|
1475 |
+
# Convert PIL image to tensor
|
1476 |
+
if mask_image:
|
1477 |
+
from torchvision import transforms as TF
|
1478 |
+
|
1479 |
+
h, w = latents.shape[2], latents.shape[3]
|
1480 |
+
mask = TF.ToTensor()(mask_image).to(device=device, dtype=self.transformer.dtype)
|
1481 |
+
mask = TF.Resize((h, w), interpolation=TF.InterpolationMode.NEAREST)(mask)
|
1482 |
+
mask = (mask > 0.1).float()
|
1483 |
+
mask = mask.squeeze(0)#.squeeze(0) # Remove the added dimensions
|
1484 |
+
else:
|
1485 |
+
mask = torch.ones_like(latents).to(device=device)
|
1486 |
+
|
1487 |
+
bool_mask = mask.unsqueeze(0).unsqueeze(0).expand_as(latents)
|
1488 |
+
mask=(1-bool_mask*1.0).to(latents.dtype)
|
1489 |
+
|
1490 |
+
masked_latents = (latents * mask).clone().detach() # apply the mask and get gt_latents
|
1491 |
+
masked_latents = self._pack_latents(masked_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1492 |
+
|
1493 |
+
source_latents = (latents).clone().detach() # apply the mask and get gt_latents
|
1494 |
+
source_latents = self._pack_latents(source_latents, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1495 |
+
|
1496 |
+
mask = self._pack_latents(mask, batch_size, num_channels_latents, 2 * (int(height) // self.vae_scale_factor), 2 * (int(width) // self.vae_scale_factor))
|
1497 |
+
|
1498 |
+
# initialize the random noise for denoising
|
1499 |
+
latents = random_latents.clone().detach()
|
1500 |
+
|
1501 |
+
self.vae = self.vae.to(torch.float32)
|
1502 |
+
|
1503 |
+
# 9. Denoising loop
|
1504 |
+
self.transformer.eval()
|
1505 |
+
self.vae.eval()
|
1506 |
+
|
1507 |
+
# 6. Denoising loop
|
1508 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1509 |
+
for i, t in enumerate(timesteps):
|
1510 |
+
if self.interrupt:
|
1511 |
+
continue
|
1512 |
+
|
1513 |
+
latent_model_input = torch.cat([latents] * 2) if do_true_cfg else latents
|
1514 |
+
|
1515 |
+
# handle guidance
|
1516 |
+
if self.transformer.config.guidance_embeds:
|
1517 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
1518 |
+
guidance = guidance.expand(latent_model_input.shape[0])
|
1519 |
+
else:
|
1520 |
+
guidance = None
|
1521 |
+
|
1522 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1523 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
1524 |
+
|
1525 |
+
noise_pred = self.transformer(
|
1526 |
+
hidden_states=latent_model_input,
|
1527 |
+
timestep=timestep / 1000,
|
1528 |
+
guidance=guidance,
|
1529 |
+
pooled_projections=pooled_prompt_embeds,
|
1530 |
+
encoder_hidden_states=prompt_embeds,
|
1531 |
+
txt_ids=text_ids,
|
1532 |
+
img_ids=latent_image_ids,
|
1533 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1534 |
+
return_dict=False,
|
1535 |
+
)[0]
|
1536 |
+
|
1537 |
+
if do_true_cfg and i < max_steps:
|
1538 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
1539 |
+
# noise_pred = neg_noise_pred + true_cfg * (noise_pred - neg_noise_pred)
|
1540 |
+
noise_pred = noise_pred + (1-mask)*(noise_pred - neg_noise_pred) * true_cfg
|
1541 |
+
else:
|
1542 |
+
neg_noise_pred, noise_pred = noise_pred.chunk(2)
|
1543 |
+
|
1544 |
+
# perform CG
|
1545 |
+
if i < max_steps:
|
1546 |
+
opt_latents = latents.detach().clone()
|
1547 |
+
with torch.enable_grad():
|
1548 |
+
opt_latents = opt_latents.detach().requires_grad_()
|
1549 |
+
opt_latents = torch.autograd.Variable(opt_latents, requires_grad=True)
|
1550 |
+
# optimizer = torch.optim.Adam([opt_latents], lr=learning_rate)
|
1551 |
+
|
1552 |
+
for _ in range(optimization_steps):
|
1553 |
+
latents_p = self.scheduler.step_final(noise_pred, t, opt_latents, return_dict=False)[0]
|
1554 |
+
if i < source_steps:
|
1555 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, source_latents, reduction='none')).mean()
|
1556 |
+
else:
|
1557 |
+
loss = (1000*torch.nn.functional.mse_loss(latents_p, masked_latents, reduction='none')*mask).mean()
|
1558 |
+
|
1559 |
+
grad = torch.autograd.grad(loss, opt_latents)[0]
|
1560 |
+
# grad = torch.clamp(grad, -0.5, 0.5)
|
1561 |
+
opt_latents = opt_latents - learning_rate * grad
|
1562 |
+
|
1563 |
+
latents = opt_latents.detach().clone()
|
1564 |
+
|
1565 |
+
|
1566 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1567 |
+
latents_dtype = latents.dtype
|
1568 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1569 |
+
|
1570 |
+
if latents.dtype != latents_dtype:
|
1571 |
+
if torch.backends.mps.is_available():
|
1572 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1573 |
+
latents = latents.to(latents_dtype)
|
1574 |
+
|
1575 |
+
if callback_on_step_end is not None:
|
1576 |
+
callback_kwargs = {}
|
1577 |
+
for k in callback_on_step_end_tensor_inputs:
|
1578 |
+
callback_kwargs[k] = locals()[k]
|
1579 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1580 |
+
|
1581 |
+
latents = callback_outputs.pop("latents", latents)
|
1582 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1583 |
+
|
1584 |
+
# call the callback, if provided
|
1585 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1586 |
+
progress_bar.update()
|
1587 |
+
|
1588 |
+
if XLA_AVAILABLE:
|
1589 |
+
xm.mark_step()
|
1590 |
+
|
1591 |
+
if output_type == "latent":
|
1592 |
+
image = latents
|
1593 |
+
|
1594 |
+
else:
|
1595 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
1596 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1597 |
+
image = self.vae.decode(latents.to(torch.float32), return_dict=False)[0]
|
1598 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1599 |
+
|
1600 |
+
# Offload all models
|
1601 |
+
self.maybe_free_model_hooks()
|
1602 |
+
|
1603 |
+
if not return_dict:
|
1604 |
+
return (image,)
|
1605 |
+
|
1606 |
+
return FluxPipelineOutput(images=image)
|
1607 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
diffusers==0.31.0
|
3 |
+
gradio==5.6.0
|
4 |
+
numpy==2.1.3
|
5 |
+
Pillow==11.0.0
|
6 |
+
torch==2.1.2
|
7 |
+
torch_xla==2.5.1
|
8 |
+
torchvision==0.16.2
|
9 |
+
transformers==4.45.2
|
saved_results/20241126_053639/input.png
ADDED
![]() |
saved_results/20241126_053639/mask.png
ADDED
![]() |
saved_results/20241126_053639/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_053639/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Inpainting",
|
3 |
+
"prompt": "a dog",
|
4 |
+
"edit_prompt": "",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 30,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 20,
|
11 |
+
"optimization_steps": 10,
|
12 |
+
"true_cfg": 2
|
13 |
+
}
|
saved_results/20241126_055109/input.png
ADDED
![]() |
saved_results/20241126_055109/mask.png
ADDED
![]() |
saved_results/20241126_055109/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_055109/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Inpainting",
|
3 |
+
"prompt": "a dog",
|
4 |
+
"edit_prompt": "",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 30,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 20,
|
11 |
+
"optimization_steps": 10,
|
12 |
+
"true_cfg": 2
|
13 |
+
}
|
saved_results/20241126_173140/input.png
ADDED
![]() |
saved_results/20241126_173140/mask.png
ADDED
![]() |
saved_results/20241126_173140/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_173140/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Inpainting",
|
3 |
+
"prompt": "a cat with blue eyes",
|
4 |
+
"edit_prompt": "",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 20,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 20,
|
11 |
+
"optimization_steps": 10,
|
12 |
+
"true_cfg": 2
|
13 |
+
}
|
saved_results/20241126_181436/input.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_181436/mask.png
ADDED
![]() |
saved_results/20241126_181436/output.png
ADDED
![]() |
saved_results/20241126_181436/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Editing",
|
3 |
+
"prompt": " ",
|
4 |
+
"edit_prompt": "volcano eruption",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 20,
|
9 |
+
"learning_rate": 0.5,
|
10 |
+
"max_source_steps": 2,
|
11 |
+
"optimization_steps": 3,
|
12 |
+
"true_cfg": 4.5
|
13 |
+
}
|
saved_results/20241126_181633/input.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_181633/mask.png
ADDED
![]() |
saved_results/20241126_181633/output.png
ADDED
![]() |
saved_results/20241126_181633/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Editing",
|
3 |
+
"prompt": " ",
|
4 |
+
"edit_prompt": "volcano eruption",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 20,
|
9 |
+
"learning_rate": 0.5,
|
10 |
+
"max_source_steps": 2,
|
11 |
+
"optimization_steps": 3,
|
12 |
+
"true_cfg": 4.5
|
13 |
+
}
|
saved_results/20241126_214810/input.png
ADDED
![]() |
saved_results/20241126_214810/mask.png
ADDED
![]() |
saved_results/20241126_214810/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_214810/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Editing",
|
3 |
+
"prompt": " ",
|
4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 30,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 5,
|
11 |
+
"optimization_steps": 3,
|
12 |
+
"true_cfg": 4.5
|
13 |
+
}
|
saved_results/20241126_214908/input.png
ADDED
![]() |
saved_results/20241126_214908/mask.png
ADDED
![]() |
saved_results/20241126_214908/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_214908/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Editing",
|
3 |
+
"prompt": " ",
|
4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 20,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 5,
|
11 |
+
"optimization_steps": 3,
|
12 |
+
"true_cfg": 4.5
|
13 |
+
}
|
saved_results/20241126_215043/input.png
ADDED
![]() |
saved_results/20241126_215043/mask.png
ADDED
![]() |
saved_results/20241126_215043/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_215043/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Editing",
|
3 |
+
"prompt": " ",
|
4 |
+
"edit_prompt": "a dog with flowers in the mouth",
|
5 |
+
"seed": 52,
|
6 |
+
"randomize_seed": false,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 20,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 5,
|
11 |
+
"optimization_steps": 3,
|
12 |
+
"true_cfg": 4.5
|
13 |
+
}
|
saved_results/20241126_221300/input.png
ADDED
![]() |
saved_results/20241126_221300/mask.png
ADDED
![]() |
saved_results/20241126_221300/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_221300/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Inpainting",
|
3 |
+
"prompt": "A building with \"ASU\" written on it.",
|
4 |
+
"edit_prompt": "",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 30,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 20,
|
11 |
+
"optimization_steps": 5,
|
12 |
+
"true_cfg": 2
|
13 |
+
}
|
saved_results/20241126_222257/input.png
ADDED
![]() |
saved_results/20241126_222257/mask.png
ADDED
![]() |
saved_results/20241126_222257/output.png
ADDED
![]() |
Git LFS Details
|
saved_results/20241126_222257/parameters.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"mode": "Inpainting",
|
3 |
+
"prompt": "A cute pig with big eyes",
|
4 |
+
"edit_prompt": "",
|
5 |
+
"seed": 0,
|
6 |
+
"randomize_seed": true,
|
7 |
+
"num_inference_steps": 30,
|
8 |
+
"max_steps": 19.8,
|
9 |
+
"learning_rate": 1,
|
10 |
+
"max_source_steps": 20,
|
11 |
+
"optimization_steps": 5,
|
12 |
+
"true_cfg": 2
|
13 |
+
}
|
saved_results/20241126_222442/input.png
ADDED
![]() |
saved_results/20241126_222442/mask.png
ADDED
![]() |
saved_results/20241126_222442/output.png
ADDED
![]() |
Git LFS Details
|