Update app.py
Browse files
app.py
CHANGED
@@ -4,4 +4,41 @@ os.environ["KERAS_BACKEND"] = "jax"
|
|
4 |
|
5 |
import keras
|
6 |
|
7 |
-
model = keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import keras
|
6 |
|
7 |
+
#model = keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier")
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import tensorflow as tf
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
@st.cache_resource
|
16 |
+
def load_model():
|
17 |
+
model = keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier") #model = tf.keras.models.load_model("cassava_model.h5")
|
18 |
+
return model
|
19 |
+
|
20 |
+
model = load_model()
|
21 |
+
|
22 |
+
# Class labels
|
23 |
+
CLASS_NAMES = ["Cassava Bacterial Blight", "Cassava Mosaic Disease", "Cassava Brown Streak Disease", "Healthy", "Cassava Green Mottle"]
|
24 |
+
|
25 |
+
# Streamlit UI
|
26 |
+
st.title("Cassava Leaf Disease Classifier")
|
27 |
+
st.write("Upload an image of a cassava leaf to classify its disease.")
|
28 |
+
|
29 |
+
# File uploader
|
30 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
image = Image.open(uploaded_file).resize((224, 224))
|
34 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
35 |
+
|
36 |
+
# Preprocess image
|
37 |
+
img_array = np.array(image) / 255.0 # Normalize
|
38 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
39 |
+
|
40 |
+
# Make prediction
|
41 |
+
prediction = model.predict(img_array)
|
42 |
+
predicted_class = CLASS_NAMES[np.argmax(prediction)]
|
43 |
+
|
44 |
+
st.write(f"Prediction: **{predicted_class}**")
|