# Available backend options are: "jax", "torch", "tensorflow". import os #os.environ["KERAS_BACKEND"] = "tensorflow" #pip install -U keras huggingface_hub #import keras #model = keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier") import streamlit as st import tensorflow as tf import numpy as np from PIL import Image # Load the model #@st.cache_resource def load_model(): model = tf.keras.models.load_model("cassava_leaf_disease_model.keras") #tf.keras.saving.load_model("hf://Fluospark128/Cassava_Disease_Classifier") cassava_model.h5 return model model = load_model() # Class labels CLASS_NAMES = ["Cassava Bacterial Blight Disease", "Cassava Brown Streak Disease", "Cassava Green Mottle Disease", "Cassava Mosaic Disease", "Healthy"] # Streamlit UI st.title("Cassava Leaf Disease Identifier") st.write("Upload an image of a cassava leaf to identify its disease.") # File uploader uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file).resize((224, 224)) st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess image img_array = np.array(image) / 255.0 # Normalize img_array = np.expand_dims(img_array, axis=0) # Add batch dimension # Make prediction prediction = model.predict(img_array) predicted_class = CLASS_NAMES[np.argmax(prediction)] st.write(f"Prediction: **{predicted_class}**")