from ArticulatoryTextFrontend import ArticulatoryTextFrontend, get_language_id if __name__ == '__main__': # demonstrating the language ID lookup print(get_language_id("eng")) print(get_language_id("deu")) print(get_language_id("fra")) # demonstrating the conversion from graphemes to features print("\n\nEnglish Test") tf = ArticulatoryTextFrontend(language="eng") features = tf.string_to_tensor("This is a complex sentence, it even has a pause!", view=True) print("\n\nChinese Test") tf = ArticulatoryTextFrontend(language="cmn") features = tf.string_to_tensor("这是一个复杂的句子,它甚至包含一个停顿。", view=True) features = tf.string_to_tensor("李绅 《悯农》 锄禾日当午, 汗滴禾下土。 谁知盘中餐, 粒粒皆辛苦。", view=True) features = tf.string_to_tensor("巴 拔 把 爸 吧", view=True) print("\n\nVietnamese Test") tf = ArticulatoryTextFrontend(language="vie") features = tf.string_to_tensor("Xin chào thế giới, quả là một ngày tốt lành để học nói tiếng Việt!", view=True) features = tf.string_to_tensor("ba bà bá bạ bả bã", view=True) print("\n\nJapanese Test") tf = ArticulatoryTextFrontend(language="jpn") features = tf.string_to_tensor("医師会がなくても、近隣の病院なら紹介してくれると思います。", view=True) print("\n\nZero-Shot Test") tf = ArticulatoryTextFrontend(language="acr") features = tf.string_to_tensor("I don't know this language, but this is just a placeholder text anyway.", view=True)