File size: 4,115 Bytes
49106b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
from PIL import Image
import torch
import matplotlib.pyplot as plt
import torch.functional as F
import torch.nn as nn
import numpy as np
import torchvision.transforms as transform
# !pip install efficientnet_pytorch -q
from efficientnet_pytorch import EfficientNet

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

val_transform = transform.Compose([transform.Resize(size=(224, 224)),
                                   transform.ToTensor(),
                                   transform.Normalize(mean=[0.485, 0.456, 0.406],
                                                        std=[0.229, 0.224, 0.225])
                                                        ])

def transform_image(image, transforms):
    # img = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
    img = transforms(image)
    img = img.unsqueeze(0)
    return img

class Efficient(nn.Module):
    def __init__(self, num_classes:int=1):
        super(Efficient, self).__init__()
        self.model = EfficientNet.from_pretrained("efficientnet-b3")
        self.pool = nn.AdaptiveAvgPool2d((1,1))
        self.fc = nn.Linear(1536, 256)
        
        self.reg_model = nn.Sequential(
            nn.BatchNorm1d(256),
            nn.Linear(256, 500),
            nn.BatchNorm1d(500),
            nn.Tanh(),
            nn.Dropout(0.2),
            nn.Linear(500, 100),
            nn.BatchNorm1d(100),
            nn.Tanh(),
            nn.Dropout(0.2),
            nn.Linear(100, 4),
        )
        
    def forward(self, x):
        x = self.model.extract_features(x)
        x = self.pool(x)
        x = x.view(-1, 1536)
        x = self.fc(x)
        x = self.reg_model(x)
        return x
    
class ModelGradCam(nn.Module):
    def __init__(self, base_model):
        super(ModelGradCam, self).__init__()
        
        self.base_model = base_model
        self.features_conv = self.base_model.model.extract_features
        self.pool = self.base_model.pool
        self.fc = self.base_model.fc
        self.classifier = self.base_model.reg_model
        self.gradients = None
        
    def activations_hook(self, grad):
        self.gradients = grad
    
    def forward(self, x):
        x = self.features_conv(x)
        h = x.register_hook(self.activations_hook)
        x = self.pool(x)
        x = x.view(-1, 1536)
        x = self.fc(x)
        x = self.classifier(x)
        return x
    
    def get_activations_gradient(self):
        return self.gradients
    
    def get_activations(self, x):
        return self.features_conv(x)
    

def plot_grad_cam(model, x_ray_image, class_names, normalized=True):
    
    model.eval()
    # fig, axs = plt.subplots(1, 2, figsize=(15, 10))
    
    image = x_ray_image
    outputs = torch.nn.functional.softmax(model(image), dim=1)
    _, pred = torch.max(outputs, 1)
    outputs[0][pred.detach().cpu().numpy()[0]].backward()
    gradients = model.get_activations_gradient()
    pooled_gradients = torch.mean(gradients, dim=[0, 2, 3])
    activations = model.get_activations(image).detach()

    activations *= pooled_gradients.unsqueeze(-1).unsqueeze(-1)
    heatmap = torch.mean(activations, dim=1).squeeze()
    heatmap = np.maximum(heatmap.cpu(), 0)
    heatmap /= torch.max(heatmap)

    img = image.squeeze().permute(1, 2, 0).cpu().numpy()
    img = img if normalized else img/255.0
    heatmap = cv2.resize(heatmap.numpy(), (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)
    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
        
    superimposed_img = heatmap * 0.0025 + img
    outputs = outputs.tolist()[0]
    output_dict = dict(zip(class_names, np.round(outputs,3)))
    return superimposed_img, class_names[pred.item()], output_dict
    # axs[0].imshow(img)
    # axs[1].imshow(superimposed_img)
    # axs[0].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.2f}')
    # axs[0].axis('off')
    # axs[1].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.2f}')
    # axs[1].axis('off')
    # plt.show()