X-ray_Classifier / app_interface.py
Emms's picture
X-RAY BASE
49106b8
import torch
import os
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from functools import partial
import Utils.Pneumonia_Utils as PU
import Utils.CT_Scan_Utils as CSU
import Utils.Covid19_Utils as C19U
import Utils.DR_Utils as DRU
# Constants for model paths
CANCER_MODEL_PATH = 'cs_models/EfficientNet_CT_Scans.pth.tar'
DIABETIC_RETINOPATHY_MODEL_PATH = 'cs_models/model_DR_9.pth.tar'
PNEUMONIA_MODEL_PATH = 'cs_models/DenseNet_Pneumonia.pth.tar'
COVID_MODEL_PATH = 'cs_models/DenseNet_Covid.pth.tar'
# Constants for class labels
CANCER_CLASS_LABELS = ['adenocarcinoma','large.cell.carcinoma','normal','squamous.cell.carcinoma']
DIABETIC_RETINOPATHY_CLASS_LABELS = ['No DR','Mild', 'Moderate', 'Severe', 'Proliferative DR']
PNEUMONIA_CLASS_LABELS = ['Normal', 'Pneumonia']
COVID_CLASS_LABELS = ['Normal','Covid19']
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
def cancer_page(image, test_model):
x_ray_image = CSU.transform_image(image, CSU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = CSU.plot_grad_cam(test_model,
x_ray_image,
CANCER_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def covid_page(image, test_model):
x_ray_image = C19U.transform_image(image, C19U.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = C19U.plot_grad_cam(test_model,
x_ray_image,
COVID_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def pneumonia_page(image, test_model):
x_ray_image = PU.transform_image(image, PU.val_transform)
x_ray_image = x_ray_image.to(device)
grad_x_ray_image, pred_label, pred_conf = PU.plot_grad_cam(test_model,
x_ray_image,
PNEUMONIA_CLASS_LABELS,
normalized=True)
grad_x_ray_image = np.clip(grad_x_ray_image, 0, 1)
return grad_x_ray_image, pred_label, pred_conf
def diabetic_retinopathy_page(image_1, image_2, test_model):
images = DRU.transform_image(image_1, image_2, DRU.val_transform)
pred_label_1, pred_label_2 = DRU.Inf_predict_image(test_model,
images,
DIABETIC_RETINOPATHY_CLASS_LABELS)
return pred_label_1, pred_label_2
if __name__ == "__main__":
CSU_model = CSU.Efficient().to(device)
CSU_model.load_state_dict(torch.load(CANCER_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
CSU_test_model = CSU.ModelGradCam(CSU_model).to(device)
CSU_images_dir = "TESTS/CHEST_CT_SCANS"
all_images = os.listdir(CSU_images_dir)
CSU_examples = [[os.path.join(CSU_images_dir,image)] for image in np.random.choice(all_images, size=4, replace=False)]
C19U_model = C19U.DenseNet().to(device)
C19U_model.load_state_dict(torch.load(COVID_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
C19U_test_model = C19U.ModelGradCam(C19U_model).to(device)
C19U_C19_images_dir = [[os.path.join("TESTS/COVID19",image)] for image in np.random.choice(os.listdir("TESTS/COVID19"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
C19U_examples = C19U_C19_images_dir + NORM_images_dir
PU_model = PU.DenseNet.to(device)
PU_model.load_state_dict(torch.load(PNEUMONIA_MODEL_PATH,map_location=torch.device('cpu')),strict=False)
PU_test_model = PU.ModelGradCam(PU_model).to(device)
PU_images_dir = [[os.path.join("TESTS/PNEUMONIA",image)] for image in np.random.choice(os.listdir("TESTS/PNEUMONIA"), size=2, replace=False)]
NORM_images_dir = [[os.path.join("TESTS/NORMAL",image)] for image in np.random.choice(os.listdir("TESTS/NORMAL"), size=2, replace=False)]
PU_examples = PU_images_dir + NORM_images_dir
DRU_cnn_model = DRU.ConvolutionNeuralNetwork().to(device)
DRU_eff_b3 = DRU.Efficient().to(device)
DRU_ensemble = DRU.EnsembleModel(DRU_cnn_model, DRU_eff_b3).to(device)
DRU_ensemble.load_state_dict(torch.load(DIABETIC_RETINOPATHY_MODEL_PATH,map_location=torch.device('cpu'))["state_dict"], strict=False)
DRU_test_model = DRU_ensemble
DRU_examples = [['TESTS/DR_1/10030_left._aug_0._aug_6.jpeg','TESTS/DR_0/10031_right._aug_17.jpeg']]
cancer_interface = gr.Interface(
fn=partial(cancer_page,test_model=CSU_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=CSU_examples,
cache_examples=False,
allow_flagging="never",
title="Chest Cancer Detection System"
)
covid_interface = gr.Interface(
fn=partial(covid_page,test_model=C19U_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=C19U_examples,
cache_examples=False,
allow_flagging="never",
title="Covid Detection System"
)
pneumonia_interface = gr.Interface(
fn=partial(pneumonia_page,test_model=PU_test_model),
inputs=gr.Image(type="pil", label="Image"),
outputs=[
gr.Image(type="numpy", label="Heatmap Image"),
gr.Textbox(label="Labels Present"),
gr.Label(label="Probabilities", show_label=False)
],
examples=PU_examples,
cache_examples=False,
allow_flagging="never",
title="Pneumonia Detection System"
)
diabetic_retinopathy_interface = gr.Interface(
fn=partial(diabetic_retinopathy_page,test_model=DRU_test_model),
inputs=[gr.Image(type="pil", label="Image"), gr.Image(type="pil", label="Image")],
outputs=[
gr.Textbox(label="Labels Present"),
gr.Textbox(label="Labels Present")
],
examples=DRU_examples,
cache_examples=False,
allow_flagging="never",
title="Diabetic Retinopathy System"
)
demo = gr.TabbedInterface(
[cancer_interface,
covid_interface,
pneumonia_interface,
diabetic_retinopathy_interface],
["Chest Cancer", "Covid19", "Pneumonia", "Diabetic Retinopathy"])
demo.launch(share=True)