hunterschep commited on
Commit
4af5544
·
verified ·
1 Parent(s): b18852b

Update app

Browse files
Files changed (1) hide show
  1. app.py +71 -49
app.py CHANGED
@@ -1,64 +1,86 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
3
+ import torch
4
+ from sacremoses import MosesPunctNormalizer
5
+ import re
6
+ import unicodedata
7
 
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
9
 
10
+ # Load the big model
11
+ big_tokenizer = NllbTokenizer.from_pretrained("hunterschep/amis-zh-3.3B")
12
+ big_model = AutoModelForSeq2SeqLM.from_pretrained("hunterschep/amis-zh-3.3B").to(device)
13
 
14
+ # Load the small model
15
+ small_tokenizer = NllbTokenizer.from_pretrained("hunterschep/amis-zh-600M")
16
+ small_model = AutoModelForSeq2SeqLM.from_pretrained("hunterschep/amis-zh-600M").to(device)
 
 
 
 
 
 
17
 
18
+ # Fix tokenizers
19
+ def fix_tokenizer(tokenizer, new_lang='ami_Latn'):
20
+ old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
21
+ tokenizer.lang_code_to_id[new_lang] = old_len - 1
22
+ tokenizer.id_to_lang_code[old_len - 1] = new_lang
23
+ tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
24
+ tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
25
+ tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
26
+ if new_lang not in tokenizer._additional_special_tokens:
27
+ tokenizer._additional_special_tokens.append(new_lang)
28
+ tokenizer.added_tokens_encoder = {}
29
+ tokenizer.added_tokens_decoder = {}
30
 
31
+ fix_tokenizer(big_tokenizer)
32
+ fix_tokenizer(small_tokenizer)
33
 
34
+ # Translation function
35
+ def translate(text, model_type, src_lang, tgt_lang):
36
+ tokenizer, model = (big_tokenizer, big_model) if model_type == "Large" else (small_tokenizer, small_model)
37
+ if src_lang == "zho_Hant":
38
+ text = preproc_chinese(text)
39
+ tokenizer.src_lang = src_lang
40
+ tokenizer.tgt_lang = tgt_lang
41
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=1024)
42
+ model.eval()
43
+ result = model.generate(
44
+ **inputs.to(model.device),
45
+ forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
46
+ max_new_tokens=256,
47
+ num_beams=4
48
+ )
49
+ return tokenizer.batch_decode(result, skip_special_tokens=True)[0]
50
 
51
+ # Preprocessing for Chinese
52
+ mpn_chinese = MosesPunctNormalizer(lang="zh")
53
+ mpn_chinese.substitutions = [(re.compile(r), sub) for r, sub in mpn_chinese.substitutions]
 
 
 
 
 
54
 
55
+ def get_non_printing_char_replacer(replace_by=" "):
56
+ non_printable_map = {ord(c): replace_by for c in (chr(i) for i in range(sys.maxunicode + 1)) if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}}
57
+ return lambda line: line.translate(non_printable_map)
58
 
59
+ replace_nonprint = get_non_printing_char_replacer(" ")
60
 
61
+ def preproc_chinese(text):
62
+ clean = text
63
+ for pattern, sub in mpn_chinese.substitutions:
64
+ clean = pattern.sub(sub, clean)
65
+ clean = replace_nonprint(clean)
66
+ return unicodedata.normalize("NFKC", clean)
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ # Gradio interface
69
+ def switch_direction(src_lang, tgt_lang):
70
+ return tgt_lang, src_lang
71
+
72
+ with gr.Blocks() as demo:
73
+ gr.Markdown("# AMIS - Chinese Translation Tool")
74
+ model_type = gr.Radio(choices=["Small", "Large"], value="Small", label="Model Type")
75
+ src_lang = gr.Radio(choices=["zho_Hant", "ami_Latn"], value="zho_Hant", label="Source Language")
76
+ tgt_lang = gr.Radio(choices=["ami_Latn", "zho_Hant"], value="ami_Latn", label="Target Language")
77
+ input_text = gr.Textbox(label="Input Text", placeholder="Enter text here...")
78
+ output_text = gr.Textbox(label="Translated Text", interactive=False)
79
+ translate_btn = gr.Button("Translate")
80
+ switch_btn = gr.Button("Switch Direction")
81
+
82
+ translate_btn.click(translate, inputs=[input_text, model_type, src_lang, tgt_lang], outputs=output_text)
83
+ switch_btn.click(switch_direction, inputs=[src_lang, tgt_lang], outputs=[src_lang, tgt_lang])
84
 
85
  if __name__ == "__main__":
86
  demo.launch()