File size: 8,149 Bytes
5543320
 
 
 
 
 
 
 
 
2a0048a
a090817
5543320
763f8fd
658ecdc
8e3a22d
5543320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a090817
5543320
 
 
 
 
 
 
 
 
 
2a0048a
a090817
2a0048a
 
5543320
2a0048a
5543320
2a0048a
 
5543320
a090817
5543320
a090817
 
5543320
 
2a0048a
 
 
 
 
a090817
 
5543320
 
2a0048a
 
 
a090817
 
 
 
 
 
5543320
a090817
a08d409
5543320
a08d409
5543320
 
 
 
a090817
2a0048a
 
 
5543320
 
 
 
a090817
 
 
 
2a0048a
5543320
 
 
 
 
a090817
5543320
 
 
 
 
 
a090817
5543320
 
 
 
 
a090817
5543320
2a0048a
 
a090817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0048a
 
a090817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0048a
 
 
a090817
2a0048a
 
 
 
 
 
 
 
a090817
2a0048a
 
 
 
 
 
 
 
5543320
a090817
5543320
a090817
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile

# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)  # Your Firebase JSON key file
firebase_admin.initialize_app(cred)
db = firestore.client()

# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)

def transcribe(audio_file):
    """
    Transcribes the audio file using the loaded ASR model.
    Returns the transcription string.
    """
    try:
        # Load and resample the audio to 16kHz
        audio, rate = librosa.load(audio_file, sr=16000)
        input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values

        # Get model predictions and decode to text
        with torch.no_grad():
            logits = model(input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]
        return transcription.replace("[UNK]", "")
    except Exception as e:
        return f"Error processing file: {e}"

def transcribe_both(audio_file):
    """
    Transcribes the audio and returns:
      - the original transcription (non-editable textbox),
      - the transcription (pre-filled for the editable textbox), and
      - the processing time (in seconds).
    """
    start_time = datetime.now()
    transcription = transcribe(audio_file)
    processing_time = (datetime.now() - start_time).total_seconds()
    return transcription, transcription, processing_time

def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
    """
    Stores the transcriptions and additional metadata (including user info and audio details)
    in Firestore as a single document.
    """
    try:
        audio_metadata = {}
        if audio_file and os.path.exists(audio_file):
            audio, sr = librosa.load(audio_file, sr=16000)
            duration = librosa.get_duration(y=audio, sr=sr)
            file_size = os.path.getsize(audio_file)
            audio_metadata = {'duration': duration, 'file_size': file_size}
        combined_data = {
            'original_text': original_transcription,
            'corrected_text': corrected_transcription,
            'timestamp': datetime.now().isoformat(),
            'processing_time': processing_time,
            'audio_metadata': audio_metadata,
            'audio_url': None,  # Placeholder if you decide to store an URL later
            'model_name': MODEL_NAME,
            'user_info': {
                'native_amis_speaker': native_speaker,
                'age': age
            }
        }
        db.collection('transcriptions').add(combined_data)
        return "Correction saved successfully!"
    except Exception as e:
        return f"Error saving correction: {e}"

def prepare_download(audio_file, original_transcription, corrected_transcription):
    """
    Prepares a ZIP file containing:
      - the uploaded audio file (as audio.wav),
      - a text file with the original transcription, and
      - a text file with the corrected transcription.
    Returns the ZIP file's path.
    """
    if audio_file is None:
        return None

    # Create a temporary file to avoid filename conflicts
    tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
    tmp_zip.close()
    with zipfile.ZipFile(tmp_zip.name, "w") as zf:
        # Add the audio file (renamed inside the zip)
        if os.path.exists(audio_file):
            zf.write(audio_file, arcname="audio.wav")
        else:
            print("Audio file not found:", audio_file)

        # Write and add the original transcription
        orig_txt = "original_transcription.txt"
        with open(orig_txt, "w", encoding="utf-8") as f:
            f.write(original_transcription)
        zf.write(orig_txt, arcname="original_transcription.txt")
        os.remove(orig_txt)

        # Write and add the corrected transcription
        corr_txt = "corrected_transcription.txt"
        with open(corr_txt, "w", encoding="utf-8") as f:
            f.write(corrected_transcription)
        zf.write(corr_txt, arcname="corrected_transcription.txt")
        os.remove(corr_txt)
    return tmp_zip.name

# Build the Gradio Blocks interface with improved styling
with gr.Blocks(css="""
    .container { 
        max-width: 800px; 
        margin: auto; 
        padding: 20px; 
        font-family: Arial, sans-serif;
    }
    .header { 
        text-align: center; 
        margin-bottom: 30px; 
    }
    .section { 
        margin-bottom: 30px; 
        padding: 15px; 
        border: 1px solid #ddd; 
        border-radius: 8px; 
        background-color: #f9f9f9;
    }
    .section h3 {
        margin-top: 0;
        margin-bottom: 15px;
        text-align: center;
    }
    .button-row {
        display: flex;
        justify-content: center;
        gap: 10px;
        flex-wrap: wrap;
    }
    @media (max-width: 600px) {
      .gradio-row { 
          flex-direction: column; 
      }
    }
""") as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown("<h1 class='header'>ASR Demo with Editable Transcription</h1>")
        
        # Step 1: Audio Upload & Transcription
        with gr.Box(elem_classes="section"):
            gr.Markdown("### Step 1: Audio Upload & Transcription")
            with gr.Row(elem_classes="gradio-row"):
                audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
                transcribe_button = gr.Button("Transcribe Audio", variant="primary")
            proc_time_state = gr.State()
        
        # Step 2: Review & Edit Transcription
        with gr.Box(elem_classes="section"):
            gr.Markdown("### Step 2: Review & Edit Transcription")
            with gr.Row(elem_classes="gradio-row"):
                original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5, placeholder="Transcription will appear here...")
                corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5, placeholder="Edit transcription here...")
        
        # Step 3: User Information
        with gr.Box(elem_classes="section"):
            gr.Markdown("### Step 3: User Information")
            with gr.Row(elem_classes="gradio-row"):
                age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
                native_speaker_input = gr.Checkbox(label="Native Amis Speaker", value=True)
        
        # Step 4: Save & Download
        with gr.Box(elem_classes="section"):
            gr.Markdown("### Step 4: Save & Download")
            with gr.Row(elem_classes="button-row"):
                save_button = gr.Button("Save Correction to Database", variant="primary")
                save_status = gr.Textbox(label="Save Status", interactive=False, placeholder="Status messages will appear here...")
            with gr.Row(elem_classes="button-row"):
                download_button = gr.Button("Download Results (ZIP)")
                download_output = gr.File(label="Download ZIP")
        
        # UI Actions
        transcribe_button.click(
            fn=transcribe_both,
            inputs=audio_input,
            outputs=[original_text, corrected_text, proc_time_state]
        )
        
        save_button.click(
            fn=store_correction,
            inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
            outputs=save_status
        )
        
        download_button.click(
            fn=prepare_download,
            inputs=[audio_input, original_text, corrected_text],
            outputs=download_output
        )


# Launch the demo
demo.launch(share=True)