File size: 8,149 Bytes
5543320 2a0048a a090817 5543320 763f8fd 658ecdc 8e3a22d 5543320 a090817 5543320 2a0048a a090817 2a0048a 5543320 2a0048a 5543320 2a0048a 5543320 a090817 5543320 a090817 5543320 2a0048a a090817 5543320 2a0048a a090817 5543320 a090817 a08d409 5543320 a08d409 5543320 a090817 2a0048a 5543320 a090817 2a0048a 5543320 a090817 5543320 a090817 5543320 a090817 5543320 2a0048a a090817 2a0048a a090817 2a0048a a090817 2a0048a a090817 2a0048a 5543320 a090817 5543320 a090817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config) # Your Firebase JSON key file
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
"""
Transcribes the audio file using the loaded ASR model.
Returns the transcription string.
"""
try:
# Load and resample the audio to 16kHz
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
# Get model predictions and decode to text
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"Error processing file: {e}"
def transcribe_both(audio_file):
"""
Transcribes the audio and returns:
- the original transcription (non-editable textbox),
- the transcription (pre-filled for the editable textbox), and
- the processing time (in seconds).
"""
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
"""
Stores the transcriptions and additional metadata (including user info and audio details)
in Firestore as a single document.
"""
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
combined_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None, # Placeholder if you decide to store an URL later
'model_name': MODEL_NAME,
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
}
}
db.collection('transcriptions').add(combined_data)
return "Correction saved successfully!"
except Exception as e:
return f"Error saving correction: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
"""
Prepares a ZIP file containing:
- the uploaded audio file (as audio.wav),
- a text file with the original transcription, and
- a text file with the corrected transcription.
Returns the ZIP file's path.
"""
if audio_file is None:
return None
# Create a temporary file to avoid filename conflicts
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
# Add the audio file (renamed inside the zip)
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
else:
print("Audio file not found:", audio_file)
# Write and add the original transcription
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
# Write and add the corrected transcription
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
# Build the Gradio Blocks interface with improved styling
with gr.Blocks(css="""
.container {
max-width: 800px;
margin: auto;
padding: 20px;
font-family: Arial, sans-serif;
}
.header {
text-align: center;
margin-bottom: 30px;
}
.section {
margin-bottom: 30px;
padding: 15px;
border: 1px solid #ddd;
border-radius: 8px;
background-color: #f9f9f9;
}
.section h3 {
margin-top: 0;
margin-bottom: 15px;
text-align: center;
}
.button-row {
display: flex;
justify-content: center;
gap: 10px;
flex-wrap: wrap;
}
@media (max-width: 600px) {
.gradio-row {
flex-direction: column;
}
}
""") as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("<h1 class='header'>ASR Demo with Editable Transcription</h1>")
# Step 1: Audio Upload & Transcription
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 1: Audio Upload & Transcription")
with gr.Row(elem_classes="gradio-row"):
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
transcribe_button = gr.Button("Transcribe Audio", variant="primary")
proc_time_state = gr.State()
# Step 2: Review & Edit Transcription
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 2: Review & Edit Transcription")
with gr.Row(elem_classes="gradio-row"):
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5, placeholder="Transcription will appear here...")
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5, placeholder="Edit transcription here...")
# Step 3: User Information
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 3: User Information")
with gr.Row(elem_classes="gradio-row"):
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Amis Speaker", value=True)
# Step 4: Save & Download
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 4: Save & Download")
with gr.Row(elem_classes="button-row"):
save_button = gr.Button("Save Correction to Database", variant="primary")
save_status = gr.Textbox(label="Save Status", interactive=False, placeholder="Status messages will appear here...")
with gr.Row(elem_classes="button-row"):
download_button = gr.Button("Download Results (ZIP)")
download_output = gr.File(label="Download ZIP")
# UI Actions
transcribe_button.click(
fn=transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
fn=store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
fn=prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
# Launch the demo
demo.launch(share=True) |