File size: 7,683 Bytes
5543320 babce84 2a0048a a090817 babce84 5543320 daefd88 babce84 658ecdc d164ea6 daefd88 babce84 5543320 babce84 5543320 daefd88 5543320 a1a48f2 5543320 d164ea6 5543320 2a0048a 5543320 babce84 5543320 0386c27 031ac03 babce84 0386c27 031ac03 daefd88 0386c27 babce84 031ac03 daefd88 babce84 031ac03 babce84 031ac03 0386c27 daefd88 031ac03 daefd88 0386c27 daefd88 0386c27 031ac03 0386c27 d164ea6 6b9e1d9 d164ea6 6b9e1d9 d164ea6 6b9e1d9 d164ea6 7283937 d164ea6 1081643 d164ea6 1081643 dfad40d babce84 d164ea6 a1a48f2 1081643 5543320 1081643 a1a48f2 d164ea6 6b9e1d9 d164ea6 0386c27 d164ea6 0386c27 d164ea6 0386c27 a090817 fb1d22f 6cf4663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
import tempfile
import uuid
# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE
'''
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cred = credentials.Certificate("serviceAccountKey.json")
'''
# Deployed Initialization
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
lang = "ami"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"處理文件錯誤: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
return transcription, transcription
def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
try:
audio_metadata = {}
audio_ref = None # This will store our storage reference
# Generate a unique identifier that will be shared between storage and Firestore
unique_id = str(uuid.uuid4())
if audio_file and os.path.exists(audio_file):
# Process audio metadata
audio, sr = librosa.load(audio_file, sr=44100)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
# Create storage path using UUID
destination_path = f"audio/{lang}/{unique_id}.wav"
# Upload to Firebase Storage
blob = bucket.blob(destination_path)
blob.upload_from_filename(audio_file)
# Get permanent reference to the file (not temporary URL)
audio_ref = destination_path
# Optional: Store both the permanent path and temporary URL
audio_file_url = blob.generate_signed_url(timedelta(hours=1))
else:
audio_file_url = None
# Create document data with explicit audio reference
combined_data = {
'transcription_info': {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'language': lang,
},
'audio_data': {
'audio_metadata': audio_metadata,
'storage_path': audio_ref, # Permanent reference
'audio_url': audio_file_url, # Temporary URL
'file_id': unique_id # Explicit unique ID
},
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
},
'timestamp': datetime.now().isoformat(),
'model_name': MODEL_NAME
}
# Create document with UUID as ID instead of auto-generated ID
doc_ref = db.collection('amis_transcriptions').document(unique_id)
doc_ref.set(combined_data)
return "校正保存成功! (Correction saved successfully!)"
except Exception as e:
return f"保存失败: {e} (Error saving correction: {e})"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(switch):
"""Switch UI text between English and Traditional Chinese"""
if switch:
return (
"阿美語轉錄與修正系統",
"步驟 1:音訊上傳與轉錄",
"步驟 2:審閱與編輯轉錄",
"步驟 3:使用者資訊",
"步驟 4:儲存與下載",
# Remove component label updates from returns
)
else:
return (
"Amis ASR Transcription & Correction System",
"Step 1: Audio Upload & Transcription",
"Step 2: Review & Edit Transcription",
"Step 3: User Information",
"Step 4: Save & Download",
# Remove component label updates from returns
)
# Interface
with gr.Blocks() as demo:
lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)", value=False)
title = gr.Markdown("Amis ASR Transcription & Correction System")
step1 = gr.Markdown("Step 1: Audio Upload & Transcription")
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
step2 = gr.Markdown("Step 2: Review & Edit Transcription")
with gr.Row():
transcribe_button = gr.Button("Transcribe Audio")
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)
step3 = gr.Markdown("Step 3: User Information")
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Amis Speaker?", value=True)
step4 = gr.Markdown("Step 4: Save & Download")
with gr.Row():
save_button = gr.Button("Save Correction")
save_status = gr.Textbox(label="Save Status", interactive=False)
with gr.Row():
download_button = gr.Button("Download ZIP File")
download_output = gr.File()
lang_switch.change(
toggle_language,
inputs=lang_switch,
outputs=[title, step1, step2, step3, step4]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
if __name__ == "__main__":
demo.launch() |