File size: 7,683 Bytes
5543320
 
 
 
 
 
 
babce84
 
2a0048a
a090817
babce84
5543320
daefd88
 
babce84
 
 
 
658ecdc
d164ea6
daefd88
babce84
 
 
5543320
babce84
5543320
 
 
daefd88
5543320
 
 
 
 
 
 
a1a48f2
5543320
 
 
 
 
 
d164ea6
5543320
 
2a0048a
5543320
babce84
5543320
0386c27
 
 
031ac03
 
 
 
babce84
0386c27
031ac03
daefd88
0386c27
 
 
babce84
031ac03
daefd88
babce84
031ac03
babce84
 
 
031ac03
 
 
 
 
 
 
 
 
0386c27
daefd88
 
 
 
 
 
 
031ac03
 
 
daefd88
0386c27
 
 
daefd88
 
 
0386c27
031ac03
 
 
 
 
0386c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d164ea6
6b9e1d9
d164ea6
6b9e1d9
 
 
 
 
 
 
 
d164ea6
6b9e1d9
 
 
 
 
 
 
 
 
d164ea6
 
7283937
d164ea6
 
 
1081643
d164ea6
 
1081643
dfad40d
babce84
d164ea6
 
 
 
a1a48f2
1081643
 
 
 
5543320
1081643
 
 
 
 
 
 
 
a1a48f2
d164ea6
 
 
6b9e1d9
d164ea6
 
0386c27
 
 
 
 
d164ea6
0386c27
 
 
 
 
d164ea6
0386c27
 
 
 
 
a090817
fb1d22f
6cf4663
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
import tempfile
import uuid

# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE 
'''
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cred = credentials.Certificate("serviceAccountKey.json")
'''
# Deployed Initialization
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)

firebase_admin.initialize_app(cred, {
    "storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()

# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
lang = "ami"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)

def transcribe(audio_file):
    try:
        audio, rate = librosa.load(audio_file, sr=16000)
        input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]
        return transcription.replace("[UNK]", "")
    except Exception as e:
        return f"處理文件錯誤: {e}"

def transcribe_both(audio_file):
    start_time = datetime.now()
    transcription = transcribe(audio_file)
    return transcription, transcription

def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
    try:
        audio_metadata = {}
        audio_ref = None  # This will store our storage reference
        
        # Generate a unique identifier that will be shared between storage and Firestore
        unique_id = str(uuid.uuid4())
        
        if audio_file and os.path.exists(audio_file):
            # Process audio metadata
            audio, sr = librosa.load(audio_file, sr=44100)
            duration = librosa.get_duration(y=audio, sr=sr)
            file_size = os.path.getsize(audio_file)
            audio_metadata = {'duration': duration, 'file_size': file_size}
            
            # Create storage path using UUID
            destination_path = f"audio/{lang}/{unique_id}.wav"
            
            # Upload to Firebase Storage
            blob = bucket.blob(destination_path)
            blob.upload_from_filename(audio_file)
            
            # Get permanent reference to the file (not temporary URL)
            audio_ref = destination_path
            
            # Optional: Store both the permanent path and temporary URL
            audio_file_url = blob.generate_signed_url(timedelta(hours=1))
        else:
            audio_file_url = None

        # Create document data with explicit audio reference
        combined_data = {
            'transcription_info': {
                'original_text': original_transcription,
                'corrected_text': corrected_transcription,
                'language': lang,
            },
            'audio_data': {
                'audio_metadata': audio_metadata,
                'storage_path': audio_ref,  # Permanent reference
                'audio_url': audio_file_url,  # Temporary URL
                'file_id': unique_id         # Explicit unique ID
            },
            'user_info': {
                'native_amis_speaker': native_speaker,
                'age': age
            },
            'timestamp': datetime.now().isoformat(),
            'model_name': MODEL_NAME
        }

        # Create document with UUID as ID instead of auto-generated ID
        doc_ref = db.collection('amis_transcriptions').document(unique_id)
        doc_ref.set(combined_data)
        
        return "校正保存成功! (Correction saved successfully!)"
    except Exception as e:
        return f"保存失败: {e} (Error saving correction: {e})"

def prepare_download(audio_file, original_transcription, corrected_transcription):
    if audio_file is None:
        return None

    tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
    tmp_zip.close()
    with zipfile.ZipFile(tmp_zip.name, "w") as zf:
        if os.path.exists(audio_file):
            zf.write(audio_file, arcname="audio.wav")
        
        orig_txt = "original_transcription.txt"
        with open(orig_txt, "w", encoding="utf-8") as f:
            f.write(original_transcription)
        zf.write(orig_txt, arcname="original_transcription.txt")
        os.remove(orig_txt)

        corr_txt = "corrected_transcription.txt"
        with open(corr_txt, "w", encoding="utf-8") as f:
            f.write(corrected_transcription)
        zf.write(corr_txt, arcname="corrected_transcription.txt")
        os.remove(corr_txt)
    return tmp_zip.name

def toggle_language(switch):
    """Switch UI text between English and Traditional Chinese"""
    if switch:
        return (
            "阿美語轉錄與修正系統", 
            "步驟 1:音訊上傳與轉錄",
            "步驟 2:審閱與編輯轉錄",
            "步驟 3:使用者資訊",
            "步驟 4:儲存與下載",
            # Remove component label updates from returns
        )
    else:
        return (
            "Amis ASR Transcription & Correction System", 
            "Step 1: Audio Upload & Transcription",
            "Step 2: Review & Edit Transcription",
            "Step 3: User Information",
            "Step 4: Save & Download",
            # Remove component label updates from returns
        )
        
# Interface
with gr.Blocks() as demo:
    lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)", value=False)
    
    title = gr.Markdown("Amis ASR Transcription & Correction System")
    step1 = gr.Markdown("Step 1: Audio Upload & Transcription")
    
    with gr.Row():
        audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
    
    step2 = gr.Markdown("Step 2: Review & Edit Transcription")
    with gr.Row():
        transcribe_button = gr.Button("Transcribe Audio")
    
    original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
    corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)

    step3 = gr.Markdown("Step 3: User Information")
    with gr.Row():
        age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
        native_speaker_input = gr.Checkbox(label="Native Amis Speaker?", value=True)

    step4 = gr.Markdown("Step 4: Save & Download")
    with gr.Row():
        save_button = gr.Button("Save Correction")
        save_status = gr.Textbox(label="Save Status", interactive=False)
    
    with gr.Row():
        download_button = gr.Button("Download ZIP File")
        download_output = gr.File()

    lang_switch.change(
        toggle_language, 
        inputs=lang_switch, 
        outputs=[title, step1, step2, step3, step4]
    )

    transcribe_button.click(
        transcribe_both, 
        inputs=audio_input, 
        outputs=[original_text, corrected_text]
    )

    save_button.click(
        store_correction, 
        inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input], 
        outputs=save_status
    )

    download_button.click(
        prepare_download, 
        inputs=[audio_input, original_text, corrected_text], 
        outputs=download_output
    )

if __name__ == "__main__":
    demo.launch()