File size: 9,988 Bytes
5543320
 
 
 
 
 
 
 
 
2a0048a
a090817
5543320
763f8fd
658ecdc
617bfb2
5543320
 
 
 
 
 
 
 
617bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543320
 
 
 
 
 
 
 
 
 
 
 
 
2a0048a
5543320
2a0048a
 
5543320
a090817
5543320
2a0048a
 
 
 
 
a090817
 
5543320
 
2a0048a
 
 
617bfb2
a090817
 
 
 
 
5543320
a090817
a08d409
5543320
a08d409
5543320
 
 
 
a090817
 
 
5543320
 
 
 
 
 
 
 
 
 
 
 
a090817
5543320
617bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a0048a
617bfb2
 
 
 
 
 
 
2a0048a
617bfb2
 
2a0048a
617bfb2
 
 
a090817
617bfb2
 
 
 
 
 
a090817
 
617bfb2
 
 
 
 
 
a090817
617bfb2
 
 
 
 
 
a090817
617bfb2
 
 
a090817
617bfb2
 
a090817
617bfb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a090817
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile

# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred)
db = firestore.client()

# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)

# Language configuration
LANGUAGE = {
    "en": {
        "title": "ASR Demo with Editable Transcription",
        "step1": "Step 1: Audio Upload & Transcription",
        "audio_input": "Audio Input",
        "transcribe_btn": "Transcribe Audio",
        "step2": "Step 2: Review & Edit Transcription",
        "original_text": "Original Transcription",
        "corrected_text": "Corrected Transcription",
        "transcription_placeholder": "Transcription will appear here...",
        "step3": "Step 3: User Information",
        "age_label": "Age",
        "native_speaker": "Native Amis Speaker",
        "step4": "Step 4: Save & Download",
        "save_btn": "Save Correction to Database",
        "save_status": "Save Status",
        "download_btn": "Download Results (ZIP)",
        "status_placeholder": "Status messages will appear here...",
        "toggle_lang": "中文/English"
    },
    "zh": {
        "title": "可編輯轉寫的語音辨識演示",
        "step1": "步驟一: 音頻上傳與轉寫",
        "audio_input": "音頻輸入",
        "transcribe_btn": "開始轉寫",
        "step2": "步驟二: 校對與編輯轉寫結果",
        "original_text": "原始轉寫結果",
        "corrected_text": "校正後文本",
        "transcription_placeholder": "轉寫結果將顯示在此處...",
        "step3": "步驟三: 用戶資訊",
        "age_label": "年齡",
        "native_speaker": "阿美族母語者",
        "step4": "步驟四: 保存與下載",
        "save_btn": "保存校正結果至數據庫",
        "save_status": "保存狀態",
        "download_btn": "下載結果(ZIP壓縮檔)",
        "status_placeholder": "狀態訊息將顯示在此處...",
        "toggle_lang": "English/中文"
    }
}

current_lang = gr.State(value="en")

def transcribe(audio_file):
    try:
        audio, rate = librosa.load(audio_file, sr=16000)
        input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
        with torch.no_grad():
            logits = model(input_values).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]
        return transcription.replace("[UNK]", "")
    except Exception as e:
        return f"Error processing file: {e}"

def transcribe_both(audio_file):
    start_time = datetime.now()
    transcription = transcribe(audio_file)
    processing_time = (datetime.now() - start_time).total_seconds()
    return transcription, transcription, processing_time

def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
    try:
        audio_metadata = {}
        if audio_file and os.path.exists(audio_file):
            audio, sr = librosa.load(audio_file, sr=16000)
            duration = librosa.get_duration(y=audio, sr=sr)
            file_size = os.path.getsize(audio_file)
            audio_metadata = {'duration': duration, 'file_size': file_size}
        combined_data = {
            'original_text': original_transcription,
            'corrected_text': corrected_transcription,
            'timestamp': datetime.now().isoformat(),
            'processing_time': processing_time,
            'audio_metadata': audio_metadata,
            'audio_url': None,
            'model_name': MODEL_NAME,
            'user_info': {
                'native_amis_speaker': native_speaker,
                'age': age
            }
        }
        db.collection('transcriptions').add(combined_data)
        return "Correction saved successfully!"
    except Exception as e:
        return f"Error saving correction: {e}"

def prepare_download(audio_file, original_transcription, corrected_transcription):
    if audio_file is None:
        return None
    tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
    tmp_zip.close()
    with zipfile.ZipFile(tmp_zip.name, "w") as zf:
        if os.path.exists(audio_file):
            zf.write(audio_file, arcname="audio.wav")
        orig_txt = "original_transcription.txt"
        with open(orig_txt, "w", encoding="utf-8") as f:
            f.write(original_transcription)
        zf.write(orig_txt, arcname="original_transcription.txt")
        os.remove(orig_txt)
        corr_txt = "corrected_transcription.txt"
        with open(corr_txt, "w", encoding="utf-8") as f:
            f.write(corrected_transcription)
        zf.write(corr_txt, arcname="corrected_transcription.txt")
        os.remove(corr_txt)
    return tmp_zip.name

def toggle_language(lang):
    new_lang = "zh" if lang == "en" else "en"
    lang_dict = LANGUAGE[new_lang]
    return [
        gr.Markdown.update(value=f"<h1 class='header'>{lang_dict['title']}</h1>"),
        gr.Markdown.update(value=f"### {lang_dict['step1']}"),
        gr.Audio.update(label=lang_dict['audio_input']),
        gr.Button.update(value=lang_dict['transcribe_btn']),
        gr.Markdown.update(value=f"### {lang_dict['step2']}"),
        gr.Textbox.update(label=lang_dict['original_text'], placeholder=lang_dict['transcription_placeholder']),
        gr.Textbox.update(label=lang_dict['corrected_text'], placeholder=lang_dict['transcription_placeholder']),
        gr.Markdown.update(value=f"### {lang_dict['step3']}"),
        gr.Slider.update(label=lang_dict['age_label']),
        gr.Checkbox.update(label=lang_dict['native_speaker']),
        gr.Markdown.update(value=f"### {lang_dict['step4']}"),
        gr.Button.update(value=lang_dict['save_btn']),
        gr.Textbox.update(label=lang_dict['save_status'], placeholder=lang_dict['status_placeholder']),
        gr.Button.update(value=lang_dict['download_btn']),
        gr.File.update(label=lang_dict['download_btn']),
        gr.Button.update(value=lang_dict['toggle_lang']),
        new_lang
    ]

with gr.Blocks(css="""
    .container { max-width: 800px; margin: auto; padding: 20px; font-family: Arial, sans-serif; }
    .header { text-align: center; margin-bottom: 30px; }
    .section { margin-bottom: 30px; padding: 15px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9; }
    .section h3 { margin-top: 0; margin-bottom: 15px; text-align: center; }
    .button-row { display: flex; justify-content: center; gap: 10px; flex-wrap: wrap; }
    .lang-toggle { position: absolute; top: 20px; right: 20px; }
    @media (max-width: 600px) { .gradio-row { flex-direction: column; } }
""") as demo:
    current_lang.render()
    
    with gr.Column(elem_classes="container"):
        with gr.Row():
            title_md = gr.Markdown(elem_classes="header")
            lang_btn = gr.Button(LANGUAGE['en']['toggle_lang'], elem_classes="lang-toggle")
        
        # Step 1
        with gr.Column(elem_classes="section"):
            step1_md = gr.Markdown()
            with gr.Row():
                audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath")
                transcribe_button = gr.Button(variant="primary")
            proc_time_state = gr.State()
        
        # Step 2
        with gr.Column(elem_classes="section"):
            step2_md = gr.Markdown()
            with gr.Row():
                original_text = gr.Textbox(interactive=False, lines=5)
                corrected_text = gr.Textbox(interactive=True, lines=5)
        
        # Step 3
        with gr.Column(elem_classes="section"):
            step3_md = gr.Markdown()
            with gr.Row():
                age_input = gr.Slider(minimum=0, maximum=100, step=1, value=25)
                native_speaker_input = gr.Checkbox(value=True)
        
        # Step 4
        with gr.Column(elem_classes="section"):
            step4_md = gr.Markdown()
            with gr.Row(elem_classes="button-row"):
                save_button = gr.Button(variant="primary")
                save_status = gr.Textbox(interactive=False)
            with gr.Row(elem_classes="button-row"):
                download_button = gr.Button()
                download_output = gr.File()
    
    lang_btn.click(
        toggle_language,
        inputs=current_lang,
        outputs=[
            title_md, step1_md, audio_input, transcribe_button,
            step2_md, original_text, corrected_text, step3_md,
            age_input, native_speaker_input, step4_md, save_button,
            save_status, download_button, download_output, lang_btn,
            current_lang
        ]
    )
    
    transcribe_button.click(
        transcribe_both,
        inputs=audio_input,
        outputs=[original_text, corrected_text, proc_time_state]
    )
    
    save_button.click(
        store_correction,
        inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
        outputs=save_status
    )
    
    download_button.click(
        prepare_download,
        inputs=[audio_input, original_text, corrected_text],
        outputs=download_output
    )
    
    demo.load(
        toggle_language,
        inputs=current_lang,
        outputs=[
            title_md, step1_md, audio_input, transcribe_button,
            step2_md, original_text, corrected_text, step3_md,
            age_input, native_speaker_input, step4_md, save_button,
            save_status, download_button, download_output, lang_btn,
            current_lang
        ]
    )

demo.launch(share=True)