File size: 9,988 Bytes
5543320 2a0048a a090817 5543320 763f8fd 658ecdc 617bfb2 5543320 617bfb2 5543320 2a0048a 5543320 2a0048a 5543320 a090817 5543320 2a0048a a090817 5543320 2a0048a 617bfb2 a090817 5543320 a090817 a08d409 5543320 a08d409 5543320 a090817 5543320 a090817 5543320 617bfb2 2a0048a 617bfb2 2a0048a 617bfb2 2a0048a 617bfb2 a090817 617bfb2 a090817 617bfb2 a090817 617bfb2 a090817 617bfb2 a090817 617bfb2 a090817 617bfb2 a090817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
# Language configuration
LANGUAGE = {
"en": {
"title": "ASR Demo with Editable Transcription",
"step1": "Step 1: Audio Upload & Transcription",
"audio_input": "Audio Input",
"transcribe_btn": "Transcribe Audio",
"step2": "Step 2: Review & Edit Transcription",
"original_text": "Original Transcription",
"corrected_text": "Corrected Transcription",
"transcription_placeholder": "Transcription will appear here...",
"step3": "Step 3: User Information",
"age_label": "Age",
"native_speaker": "Native Amis Speaker",
"step4": "Step 4: Save & Download",
"save_btn": "Save Correction to Database",
"save_status": "Save Status",
"download_btn": "Download Results (ZIP)",
"status_placeholder": "Status messages will appear here...",
"toggle_lang": "中文/English"
},
"zh": {
"title": "可編輯轉寫的語音辨識演示",
"step1": "步驟一: 音頻上傳與轉寫",
"audio_input": "音頻輸入",
"transcribe_btn": "開始轉寫",
"step2": "步驟二: 校對與編輯轉寫結果",
"original_text": "原始轉寫結果",
"corrected_text": "校正後文本",
"transcription_placeholder": "轉寫結果將顯示在此處...",
"step3": "步驟三: 用戶資訊",
"age_label": "年齡",
"native_speaker": "阿美族母語者",
"step4": "步驟四: 保存與下載",
"save_btn": "保存校正結果至數據庫",
"save_status": "保存狀態",
"download_btn": "下載結果(ZIP壓縮檔)",
"status_placeholder": "狀態訊息將顯示在此處...",
"toggle_lang": "English/中文"
}
}
current_lang = gr.State(value="en")
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"Error processing file: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
combined_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None,
'model_name': MODEL_NAME,
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
}
}
db.collection('transcriptions').add(combined_data)
return "Correction saved successfully!"
except Exception as e:
return f"Error saving correction: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(lang):
new_lang = "zh" if lang == "en" else "en"
lang_dict = LANGUAGE[new_lang]
return [
gr.Markdown.update(value=f"<h1 class='header'>{lang_dict['title']}</h1>"),
gr.Markdown.update(value=f"### {lang_dict['step1']}"),
gr.Audio.update(label=lang_dict['audio_input']),
gr.Button.update(value=lang_dict['transcribe_btn']),
gr.Markdown.update(value=f"### {lang_dict['step2']}"),
gr.Textbox.update(label=lang_dict['original_text'], placeholder=lang_dict['transcription_placeholder']),
gr.Textbox.update(label=lang_dict['corrected_text'], placeholder=lang_dict['transcription_placeholder']),
gr.Markdown.update(value=f"### {lang_dict['step3']}"),
gr.Slider.update(label=lang_dict['age_label']),
gr.Checkbox.update(label=lang_dict['native_speaker']),
gr.Markdown.update(value=f"### {lang_dict['step4']}"),
gr.Button.update(value=lang_dict['save_btn']),
gr.Textbox.update(label=lang_dict['save_status'], placeholder=lang_dict['status_placeholder']),
gr.Button.update(value=lang_dict['download_btn']),
gr.File.update(label=lang_dict['download_btn']),
gr.Button.update(value=lang_dict['toggle_lang']),
new_lang
]
with gr.Blocks(css="""
.container { max-width: 800px; margin: auto; padding: 20px; font-family: Arial, sans-serif; }
.header { text-align: center; margin-bottom: 30px; }
.section { margin-bottom: 30px; padding: 15px; border: 1px solid #ddd; border-radius: 8px; background-color: #f9f9f9; }
.section h3 { margin-top: 0; margin-bottom: 15px; text-align: center; }
.button-row { display: flex; justify-content: center; gap: 10px; flex-wrap: wrap; }
.lang-toggle { position: absolute; top: 20px; right: 20px; }
@media (max-width: 600px) { .gradio-row { flex-direction: column; } }
""") as demo:
current_lang.render()
with gr.Column(elem_classes="container"):
with gr.Row():
title_md = gr.Markdown(elem_classes="header")
lang_btn = gr.Button(LANGUAGE['en']['toggle_lang'], elem_classes="lang-toggle")
# Step 1
with gr.Column(elem_classes="section"):
step1_md = gr.Markdown()
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath")
transcribe_button = gr.Button(variant="primary")
proc_time_state = gr.State()
# Step 2
with gr.Column(elem_classes="section"):
step2_md = gr.Markdown()
with gr.Row():
original_text = gr.Textbox(interactive=False, lines=5)
corrected_text = gr.Textbox(interactive=True, lines=5)
# Step 3
with gr.Column(elem_classes="section"):
step3_md = gr.Markdown()
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, value=25)
native_speaker_input = gr.Checkbox(value=True)
# Step 4
with gr.Column(elem_classes="section"):
step4_md = gr.Markdown()
with gr.Row(elem_classes="button-row"):
save_button = gr.Button(variant="primary")
save_status = gr.Textbox(interactive=False)
with gr.Row(elem_classes="button-row"):
download_button = gr.Button()
download_output = gr.File()
lang_btn.click(
toggle_language,
inputs=current_lang,
outputs=[
title_md, step1_md, audio_input, transcribe_button,
step2_md, original_text, corrected_text, step3_md,
age_input, native_speaker_input, step4_md, save_button,
save_status, download_button, download_output, lang_btn,
current_lang
]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.load(
toggle_language,
inputs=current_lang,
outputs=[
title_md, step1_md, audio_input, transcribe_button,
step2_md, original_text, corrected_text, step3_md,
age_input, native_speaker_input, step4_md, save_button,
save_status, download_button, download_output, lang_btn,
current_lang
]
)
demo.launch(share=True) |