File size: 7,590 Bytes
5543320 2a0048a a090817 5543320 763f8fd 658ecdc 40d6177 5543320 40d6177 5543320 40d6177 5543320 2a0048a 5543320 2a0048a 5543320 a090817 5543320 2a0048a a090817 5543320 2a0048a b422101 a090817 5543320 a090817 40d6177 5543320 40d6177 5543320 40d6177 a090817 5543320 40d6177 5543320 40d6177 5543320 a090817 5543320 40d6177 2a0048a 40d6177 2a0048a 40d6177 a090817 b422101 40d6177 b422101 40d6177 a090817 b422101 40d6177 b422101 40d6177 a090817 b422101 40d6177 b422101 40d6177 a090817 b422101 40d6177 a090817 40d6177 a090817 40d6177 a090817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config) # Your Firebase JSON key file
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"处理文件错误: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
combined_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None,
'model_name': MODEL_NAME,
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
}
}
db.collection('transcriptions').add(combined_data)
return "校正保存成功! (Correction saved successfully!)"
except Exception as e:
return f"保存失败: {e} (Error saving correction: {e})"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
# 界面设计
with gr.Blocks(css="""
.container {
max-width: 800px;
margin: auto;
padding: 20px;
font-family: Arial, sans-serif;
}
.header {
text-align: center;
margin-bottom: 30px;
}
.section {
margin-bottom: 30px;
padding: 15px;
border: 1px solid #ddd;
border-radius: 8px;
background-color: #f9f9f9;
}
.section h3 {
margin-top: 0;
margin-bottom: 15px;
text-align: center;
}
.button-row {
display: flex;
justify-content: center;
gap: 10px;
flex-wrap: wrap;
}
@media (max-width: 600px) {
.gradio-row {
flex-direction: column;
}
}
""") as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("<h1 class='header'>阿美語轉錄與修正系統 (ASR Correction System)</h1>")
with gr.Column(elem_classes="section"):
gr.Markdown("### 步驟 1:音訊上傳與轉錄(Audio Upload & Transcription)")
with gr.Row():
audio_input = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="音訊輸入 (Audio Input)"
)
transcribe_button = gr.Button("轉錄音訊 (Transcribe Audio)", variant="primary")
proc_time_state = gr.State()
with gr.Column(elem_classes="section"):
gr.Markdown("### 步驟 2:審閱與編輯轉錄 (Review & Edit Transcription)")
with gr.Row():
original_text = gr.Textbox(
label="原始轉錄 (Original Transcription)",
interactive=False,
lines=5,
placeholder="謄本將在此出現... (Transcription will appear here...)"
)
corrected_text = gr.Textbox(
label="更正轉錄 (Corrected Transcription)",
interactive=True,
lines=5,
placeholder="在此編輯轉錄... (Edit transcription here...)"
)
with gr.Column(elem_classes="section"):
gr.Markdown("### 步驟 3:使用者資訊 (User Information)")
with gr.Row():
age_input = gr.Slider(
minimum=0,
maximum=100,
step=1,
label="年齡 (Age)",
value=25
)
native_speaker_input = gr.Checkbox(
label="以阿美語為母語? (Native Amis Speaker?)",
value=True
)
with gr.Column(elem_classes="section"):
gr.Markdown("### 步驟 4:儲存與下載 (Save & Download)")
with gr.Row(elem_classes="button-row"):
save_button = gr.Button("儲存更正 (Save Correction)", variant="primary")
save_status = gr.Textbox(
label="儲存狀態 (Save Status)",
interactive=False,
placeholder="狀態訊息會出現在這裡... (Status messages will appear here...)"
)
with gr.Row(elem_classes="button-row"):
download_button = gr.Button("下載 ZIP 檔案 (Download ZIP)")
download_output = gr.File(label="下載 ZIP 檔案 (Download ZIP)")
transcribe_button.click(
fn=transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
fn=store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
fn=prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.launch(share=True) |