hunterschep's picture
update to include some new database fields
1300ad6 verified
raw
history blame
8.15 kB
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore
from datetime import datetime
import json
import tempfile
# Initialize Firebase
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config) # Your Firebase JSON key file
firebase_admin.initialize_app(cred)
db = firestore.client()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
"""
Transcribes the audio file using the loaded ASR model.
Returns the transcription string.
"""
try:
# Load and resample the audio to 16kHz
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
# Get model predictions and decode to text
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"Error processing file: {e}"
def transcribe_both(audio_file):
"""
Transcribes the audio and returns:
- the original transcription (non-editable textbox),
- the transcription (pre-filled for the editable textbox), and
- the processing time (in seconds).
"""
start_time = datetime.now()
transcription = transcribe(audio_file)
processing_time = (datetime.now() - start_time).total_seconds()
return transcription, transcription, processing_time
def store_correction(original_transcription, corrected_transcription, audio_file, processing_time, age, native_speaker):
"""
Stores the transcriptions and additional metadata (including user info and audio details)
in Firestore as a single document.
"""
try:
audio_metadata = {}
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=16000)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
combined_data = {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'timestamp': datetime.now().isoformat(),
'processing_time': processing_time,
'audio_metadata': audio_metadata,
'audio_url': None, # Placeholder if you decide to store an URL later
'model_name': MODEL_NAME,
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
}
}
db.collection('transcriptions').add(combined_data)
return "Correction saved successfully!"
except Exception as e:
return f"Error saving correction: {e}"
def prepare_download(audio_file, original_transcription, corrected_transcription):
"""
Prepares a ZIP file containing:
- the uploaded audio file (as audio.wav),
- a text file with the original transcription, and
- a text file with the corrected transcription.
Returns the ZIP file's path.
"""
if audio_file is None:
return None
# Create a temporary file to avoid filename conflicts
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
# Add the audio file (renamed inside the zip)
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
else:
print("Audio file not found:", audio_file)
# Write and add the original transcription
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
# Write and add the corrected transcription
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
# Build the Gradio Blocks interface with improved styling
with gr.Blocks(css="""
.container {
max-width: 800px;
margin: auto;
padding: 20px;
font-family: Arial, sans-serif;
}
.header {
text-align: center;
margin-bottom: 30px;
}
.section {
margin-bottom: 30px;
padding: 15px;
border: 1px solid #ddd;
border-radius: 8px;
background-color: #f9f9f9;
}
.section h3 {
margin-top: 0;
margin-bottom: 15px;
text-align: center;
}
.button-row {
display: flex;
justify-content: center;
gap: 10px;
flex-wrap: wrap;
}
@media (max-width: 600px) {
.gradio-row {
flex-direction: column;
}
}
""") as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("<h1 class='header'>ASR Demo with Editable Transcription</h1>")
# Step 1: Audio Upload & Transcription
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 1: Audio Upload & Transcription")
with gr.Row(elem_classes="gradio-row"):
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
transcribe_button = gr.Button("Transcribe Audio", variant="primary")
proc_time_state = gr.State()
# Step 2: Review & Edit Transcription
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 2: Review & Edit Transcription")
with gr.Row(elem_classes="gradio-row"):
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5, placeholder="Transcription will appear here...")
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5, placeholder="Edit transcription here...")
# Step 3: User Information
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 3: User Information")
with gr.Row(elem_classes="gradio-row"):
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Amis Speaker", value=True)
# Step 4: Save & Download
with gr.Box(elem_classes="section"):
gr.Markdown("### Step 4: Save & Download")
with gr.Row(elem_classes="button-row"):
save_button = gr.Button("Save Correction to Database", variant="primary")
save_status = gr.Textbox(label="Save Status", interactive=False, placeholder="Status messages will appear here...")
with gr.Row(elem_classes="button-row"):
download_button = gr.Button("Download Results (ZIP)")
download_output = gr.File(label="Download ZIP")
# UI Actions
transcribe_button.click(
fn=transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text, proc_time_state]
)
save_button.click(
fn=store_correction,
inputs=[original_text, corrected_text, audio_input, proc_time_state, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
fn=prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
# Launch the demo
demo.launch(share=True)