hunterschep's picture
segment database by language
0b24e72 verified
raw
history blame
7.65 kB
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
import tempfile
import uuid
# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE
'''
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cred = credentials.Certificate("serviceAccountKey.json")
'''
# Deployed Initialization
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/xlsr53_Amis"
lang = "ami"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"處理文件錯誤: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
return transcription, transcription
def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
try:
audio_metadata = {}
audio_file_url = None
# If an audio file is provided, upload it to Firebase Storage
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=44100)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
# Generate a unique identifier for the audio file
unique_id = str(uuid.uuid4())
destination_path = f"audio/{lang}/{unique_id}.wav"
# Create a blob and upload the file
blob = bucket.blob(destination_path)
blob.upload_from_filename(audio_file)
# Generate a signed download URL valid for 1 hour (adjust expiration as needed)
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
combined_data = {
'transcription_info': {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'language': lang,
},
'audio_data': {
'audio_metadata': audio_metadata,
'audio_file_url': audio_file_url,
},
'user_info': {
'native_amis_speaker': native_speaker,
'age': age
},
'timestamp': datetime.now().isoformat(),
'model_name': MODEL_NAME
}
# Save data to a collection for that language
db.collection('amis_transcriptions').add(combined_data)
return "校正保存成功! (Correction saved successfully!)"
except Exception as e:
return f"保存失败: {e} (Error saving correction: {e})"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(switch):
"""Switch UI text between English and Traditional Chinese"""
if switch:
return (
"阿美語轉錄與修正系統",
"步驟 1:音訊上傳與轉錄",
"步驟 2:審閱與編輯轉錄",
"步驟 3:使用者資訊",
"步驟 4:儲存與下載",
"音訊輸入", "轉錄音訊",
"原始轉錄", "更正轉錄",
"年齡", "以阿美語為母語?",
"儲存更正", "儲存狀態",
"下載 ZIP 檔案"
)
else:
return (
"Amis ASR Transcription & Correction System",
"Step 1: Audio Upload & Transcription",
"Step 2: Review & Edit Transcription",
"Step 3: User Information",
"Step 4: Save & Download",
"Audio Input", "Transcribe Audio",
"Original Transcription", "Corrected Transcription",
"Age", "Native Amis Speaker?",
"Save Correction", "Save Status",
"Download ZIP File"
)
# Interface
with gr.Blocks() as demo:
lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)")
title = gr.Markdown("Amis ASR Transcription & Correction System")
step1 = gr.Markdown("Step 1: Audio Upload & Transcription")
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
step2 = gr.Markdown("Step 2: Review & Edit Transcription")
with gr.Row():
transcribe_button = gr.Button("Transcribe Audio")
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)
step3 = gr.Markdown("Step 3: User Information")
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Amis Speaker?", value=True)
step4 = gr.Markdown("Step 4: Save & Download")
with gr.Row():
save_button = gr.Button("Save Correction")
save_status = gr.Textbox(label="Save Status", interactive=False)
with gr.Row():
download_button = gr.Button("Download ZIP File")
download_output = gr.File()
lang_switch.change(
toggle_language,
inputs=lang_switch,
outputs=[title, step1, step2, step3, step4, audio_input, transcribe_button,
original_text, corrected_text, age_input, native_speaker_input,
save_button, save_status, download_button]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.launch()