File size: 7,683 Bytes
0e467b4 0f2e342 0e467b4 0f2e342 0e467b4 95eb12c 0e467b4 95eb12c 0e467b4 0f2e342 0e467b4 556e3aa 0e467b4 63a667b 0e467b4 b390a9a 0e467b4 b390a9a 0e467b4 b5a7d28 0e467b4 556e3aa 0e467b4 f293fac 0e467b4 f293fac 9cffc38 0e467b4 9cffc38 0e467b4 556e3aa 0e467b4 556e3aa 0e467b4 556e3aa 0e467b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2Processor, AutoModelForCTC
import zipfile
import os
import firebase_admin
from firebase_admin import credentials, firestore, storage
from datetime import datetime, timedelta
import json
import tempfile
import uuid
# LOCAL INITIALIZATION - ONLY USE ON YOUR OWN DEVICE
'''
os.chdir(os.path.dirname(os.path.abspath(__file__)))
cred = credentials.Certificate("serviceAccountKey.json")
'''
# Deployed Initialization
firebase_config = json.loads(os.environ.get('firebase_creds'))
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred, {
"storageBucket": "amis-asr-corrections-dem-8cf3d.firebasestorage.app"
})
db = firestore.client()
bucket = storage.bucket()
# Load the ASR model and processor
MODEL_NAME = "eleferrand/XLSR_paiwan"
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
def transcribe(audio_file):
try:
audio, rate = librosa.load(audio_file, sr=16000)
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
return transcription.replace("[UNK]", "")
except Exception as e:
return f"處理文件錯誤: {e}"
def transcribe_both(audio_file):
start_time = datetime.now()
transcription = transcribe(audio_file)
return transcription, transcription
def store_correction(original_transcription, corrected_transcription, audio_file, age, native_speaker):
try:
audio_metadata = {}
audio_file_url = None
# If an audio file is provided, upload it to Firebase Storage
if audio_file and os.path.exists(audio_file):
audio, sr = librosa.load(audio_file, sr=44100)
duration = librosa.get_duration(y=audio, sr=sr)
file_size = os.path.getsize(audio_file)
audio_metadata = {'duration': duration, 'file_size': file_size}
# Generate a unique identifier for the audio file
unique_id = str(uuid.uuid4())
destination_path = f"audio/pai/{unique_id}.wav"
# Create a blob and upload the file
blob = bucket.blob(destination_path)
blob.upload_from_filename(audio_file)
# Generate a signed download URL valid for 1 hour (adjust expiration as needed)
audio_file_url = blob.generate_signed_url(expiration=timedelta(hours=1))
combined_data = {
'transcription_info': {
'original_text': original_transcription,
'corrected_text': corrected_transcription,
'language': 'pai',
},
'audio_data': {
'audio_metadata': audio_metadata,
'audio_file_url': audio_file_url,
},
'user_info': {
'native_paiwan_speaker': native_speaker,
'age': age
},
'timestamp': datetime.now().isoformat(),
'model_name': MODEL_NAME
}
# Save data to a collection for that language
db.collection('paiwan_transcriptions').add(combined_data)
return "校正保存成功! (Correction saved successfully!)"
except Exception as e:
return f"保存失败: {e} (Error saving correction: {e})"
def prepare_download(audio_file, original_transcription, corrected_transcription):
if audio_file is None:
return None
tmp_zip = tempfile.NamedTemporaryFile(delete=False, suffix=".zip")
tmp_zip.close()
with zipfile.ZipFile(tmp_zip.name, "w") as zf:
if os.path.exists(audio_file):
zf.write(audio_file, arcname="audio.wav")
orig_txt = "original_transcription.txt"
with open(orig_txt, "w", encoding="utf-8") as f:
f.write(original_transcription)
zf.write(orig_txt, arcname="original_transcription.txt")
os.remove(orig_txt)
corr_txt = "corrected_transcription.txt"
with open(corr_txt, "w", encoding="utf-8") as f:
f.write(corrected_transcription)
zf.write(corr_txt, arcname="corrected_transcription.txt")
os.remove(corr_txt)
return tmp_zip.name
def toggle_language(switch):
"""Switch UI text between English and Traditional Chinese"""
if switch:
return (
"排灣語自動語音識別逐字稿與修正系統",
"步驟 1:音訊上傳與逐字稿",
"步驟 2:審閱與編輯逐字稿",
"步驟 3:使用者資訊",
"步驟 4:儲存與下載",
"音訊輸入", "語音辨識",
"原始逐字稿", "更正逐字稿",
"年齡", "母語排灣語使用者?",
"儲存更正", "儲存狀態",
"下載 ZIP 檔案"
)
else:
return (
"Paiwan ASR Transcription & Correction System",
"Step 1: Audio Upload & Transcription",
"Step 2: Review & Edit Transcription",
"Step 3: User Information",
"Step 4: Save & Download",
"Audio Input", "Transcribe Audio",
"Original Transcription", "Corrected Transcription",
"Age", "Native Paiwan Speaker?",
"Save Correction", "Save Status",
"Download ZIP File"
)
# Interface
with gr.Blocks() as demo:
lang_switch = gr.Checkbox(label="切換到繁體中文 (Switch to Traditional Chinese)")
title = gr.Markdown("Paiwan ASR Transcription & Correction System")
step1 = gr.Markdown("Step 1: Audio Upload & Transcription")
with gr.Row():
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
step2 = gr.Markdown("Step 2: Review & Edit Transcription")
with gr.Row():
transcribe_button = gr.Button("Transcribe Audio")
original_text = gr.Textbox(label="Original Transcription", interactive=False, lines=5)
corrected_text = gr.Textbox(label="Corrected Transcription", interactive=True, lines=5)
step3 = gr.Markdown("Step 3: User Information")
with gr.Row():
age_input = gr.Slider(minimum=0, maximum=100, step=1, label="Age", value=25)
native_speaker_input = gr.Checkbox(label="Native Paiwan Speaker?", value=True)
step4 = gr.Markdown("Step 4: Save & Download")
with gr.Row():
save_button = gr.Button("Save Correction")
save_status = gr.Textbox(label="Save Status", interactive=False)
with gr.Row():
download_button = gr.Button("Download ZIP File")
download_output = gr.File()
lang_switch.change(
toggle_language,
inputs=lang_switch,
outputs=[title, step1, step2, step3, step4, audio_input, transcribe_button,
original_text, corrected_text, age_input, native_speaker_input,
save_button, save_status, download_button]
)
transcribe_button.click(
transcribe_both,
inputs=audio_input,
outputs=[original_text, corrected_text]
)
save_button.click(
store_correction,
inputs=[original_text, corrected_text, audio_input, age_input, native_speaker_input],
outputs=save_status
)
download_button.click(
prepare_download,
inputs=[audio_input, original_text, corrected_text],
outputs=download_output
)
demo.launch() |