|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from collections import defaultdict |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
|
|
from .models.attention_processor import LoRAAttnProcessor |
|
from .utils import ( |
|
DIFFUSERS_CACHE, |
|
HF_HUB_OFFLINE, |
|
_get_model_file, |
|
deprecate, |
|
is_safetensors_available, |
|
is_transformers_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_safetensors_available(): |
|
import safetensors |
|
|
|
if is_transformers_available(): |
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" |
|
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" |
|
|
|
TEXT_INVERSION_NAME = "learned_embeds.bin" |
|
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors" |
|
|
|
|
|
class AttnProcsLayers(torch.nn.Module): |
|
def __init__(self, state_dict: Dict[str, torch.Tensor]): |
|
super().__init__() |
|
self.layers = torch.nn.ModuleList(state_dict.values()) |
|
self.mapping = dict(enumerate(state_dict.keys())) |
|
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} |
|
|
|
|
|
|
|
def map_to(module, state_dict, *args, **kwargs): |
|
new_state_dict = {} |
|
for key, value in state_dict.items(): |
|
num = int(key.split(".")[1]) |
|
new_key = key.replace(f"layers.{num}", module.mapping[num]) |
|
new_state_dict[new_key] = value |
|
|
|
return new_state_dict |
|
|
|
def map_from(module, state_dict, *args, **kwargs): |
|
all_keys = list(state_dict.keys()) |
|
for key in all_keys: |
|
replace_key = key.split(".processor")[0] + ".processor" |
|
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
self._register_state_dict_hook(map_to) |
|
self._register_load_state_dict_pre_hook(map_from, with_module=True) |
|
|
|
|
|
class UNet2DConditionLoadersMixin: |
|
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): |
|
r""" |
|
Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be |
|
defined in |
|
[cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py) |
|
and be a `torch.nn.Module` class. |
|
|
|
<Tip warning={true}> |
|
|
|
This function is experimental and might change in the future. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `diffusers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
|
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
|
|
</Tip> |
|
""" |
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
if use_safetensors and not is_safetensors_available(): |
|
raise ValueError( |
|
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors" |
|
) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = is_safetensors_available() |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except IOError as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
pass |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
|
|
attn_processors = {} |
|
|
|
is_lora = all("lora" in k for k in state_dict.keys()) |
|
|
|
if is_lora: |
|
lora_grouped_dict = defaultdict(dict) |
|
for key, value in state_dict.items(): |
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) |
|
lora_grouped_dict[attn_processor_key][sub_key] = value |
|
|
|
for key, value_dict in lora_grouped_dict.items(): |
|
rank = value_dict["to_k_lora.down.weight"].shape[0] |
|
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[1] |
|
hidden_size = value_dict["to_k_lora.up.weight"].shape[0] |
|
|
|
attn_processors[key] = LoRAAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank |
|
) |
|
attn_processors[key].load_state_dict(value_dict) |
|
|
|
else: |
|
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.") |
|
|
|
|
|
attn_processors = {k: v.to(device=self.device, dtype=self.dtype) for k, v in attn_processors.items()} |
|
|
|
|
|
self.set_attn_processor(attn_processors) |
|
|
|
def save_attn_procs( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = False, |
|
**kwargs, |
|
): |
|
r""" |
|
Save an attention processor to a directory, so that it can be re-loaded using the |
|
`[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful when in distributed training like |
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on |
|
the main process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one |
|
need to replace `torch.save` by another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
""" |
|
weight_name = weight_name or deprecate( |
|
"weights_name", |
|
"0.18.0", |
|
"`weights_name` is deprecated, please use `weight_name` instead.", |
|
take_from=kwargs, |
|
) |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
model_to_save = AttnProcsLayers(self.attn_processors) |
|
|
|
|
|
state_dict = model_to_save.state_dict() |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = LORA_WEIGHT_NAME |
|
|
|
|
|
save_function(state_dict, os.path.join(save_directory, weight_name)) |
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}") |
|
|
|
|
|
class TextualInversionLoaderMixin: |
|
r""" |
|
Mixin class for loading textual inversion tokens and embeddings to the tokenizer and text encoder. |
|
""" |
|
|
|
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): |
|
r""" |
|
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds |
|
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token |
|
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual |
|
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. |
|
|
|
Parameters: |
|
prompt (`str` or list of `str`): |
|
The prompt or prompts to guide the image generation. |
|
tokenizer (`PreTrainedTokenizer`): |
|
The tokenizer responsible for encoding the prompt into input tokens. |
|
|
|
Returns: |
|
`str` or list of `str`: The converted prompt |
|
""" |
|
if not isinstance(prompt, List): |
|
prompts = [prompt] |
|
else: |
|
prompts = prompt |
|
|
|
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts] |
|
|
|
if not isinstance(prompt, List): |
|
return prompts[0] |
|
|
|
return prompts |
|
|
|
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): |
|
r""" |
|
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds |
|
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token |
|
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual |
|
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned. |
|
|
|
Parameters: |
|
prompt (`str`): |
|
The prompt to guide the image generation. |
|
tokenizer (`PreTrainedTokenizer`): |
|
The tokenizer responsible for encoding the prompt into input tokens. |
|
|
|
Returns: |
|
`str`: The converted prompt |
|
""" |
|
tokens = tokenizer.tokenize(prompt) |
|
for token in tokens: |
|
if token in tokenizer.added_tokens_encoder: |
|
replacement = token |
|
i = 1 |
|
while f"{token}_{i}" in tokenizer.added_tokens_encoder: |
|
replacement += f"{token}_{i}" |
|
i += 1 |
|
|
|
prompt = prompt.replace(token, replacement) |
|
|
|
return prompt |
|
|
|
def load_textual_inversion( |
|
self, pretrained_model_name_or_path: Union[str, Dict[str, torch.Tensor]], token: Optional[str] = None, **kwargs |
|
): |
|
r""" |
|
Load textual inversion embeddings into the text encoder of stable diffusion pipelines. Both `diffusers` and |
|
`Automatic1111` formats are supported. |
|
|
|
<Tip warning={true}> |
|
|
|
This function is experimental and might change in the future. |
|
|
|
</Tip> |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like |
|
`"sd-concepts-library/low-poly-hd-logos-icons"`. |
|
- A path to a *directory* containing textual inversion weights, e.g. |
|
`./my_text_inversion_directory/`. |
|
weight_name (`str`, *optional*): |
|
Name of a custom weight file. This should be used in two cases: |
|
|
|
- The saved textual inversion file is in `diffusers` format, but was saved under a specific weight |
|
name, such as `text_inv.bin`. |
|
- The saved textual inversion file is in the "Automatic1111" form. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `diffusers-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
|
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models). |
|
|
|
</Tip> |
|
""" |
|
if not hasattr(self, "tokenizer") or not isinstance(self.tokenizer, PreTrainedTokenizer): |
|
raise ValueError( |
|
f"{self.__class__.__name__} requires `self.tokenizer` of type `PreTrainedTokenizer` for calling" |
|
f" `{self.load_textual_inversion.__name__}`" |
|
) |
|
|
|
if not hasattr(self, "text_encoder") or not isinstance(self.text_encoder, PreTrainedModel): |
|
raise ValueError( |
|
f"{self.__class__.__name__} requires `self.text_encoder` of type `PreTrainedModel` for calling" |
|
f" `{self.load_textual_inversion.__name__}`" |
|
) |
|
|
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", None) |
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
if use_safetensors and not is_safetensors_available(): |
|
raise ValueError( |
|
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetenstors" |
|
) |
|
|
|
allow_pickle = False |
|
if use_safetensors is None: |
|
use_safetensors = is_safetensors_available() |
|
allow_pickle = True |
|
|
|
user_agent = { |
|
"file_type": "text_inversion", |
|
"framework": "pytorch", |
|
} |
|
|
|
|
|
model_file = None |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except Exception as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
|
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=weight_name or TEXT_INVERSION_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
|
|
|
|
if isinstance(state_dict, torch.Tensor): |
|
if token is None: |
|
raise ValueError( |
|
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`." |
|
) |
|
embedding = state_dict |
|
elif len(state_dict) == 1: |
|
|
|
loaded_token, embedding = next(iter(state_dict.items())) |
|
elif "string_to_param" in state_dict: |
|
|
|
loaded_token = state_dict["name"] |
|
embedding = state_dict["string_to_param"]["*"] |
|
|
|
if token is not None and loaded_token != token: |
|
logger.warn(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.") |
|
else: |
|
token = loaded_token |
|
|
|
embedding = embedding.to(dtype=self.text_encoder.dtype, device=self.text_encoder.device) |
|
|
|
|
|
vocab = self.tokenizer.get_vocab() |
|
if token in vocab: |
|
raise ValueError( |
|
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder." |
|
) |
|
elif f"{token}_1" in vocab: |
|
multi_vector_tokens = [token] |
|
i = 1 |
|
while f"{token}_{i}" in self.tokenizer.added_tokens_encoder: |
|
multi_vector_tokens.append(f"{token}_{i}") |
|
i += 1 |
|
|
|
raise ValueError( |
|
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder." |
|
) |
|
|
|
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1 |
|
|
|
if is_multi_vector: |
|
tokens = [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])] |
|
embeddings = [e for e in embedding] |
|
else: |
|
tokens = [token] |
|
embeddings = [embedding[0]] if len(embedding.shape) > 1 else [embedding] |
|
|
|
|
|
self.tokenizer.add_tokens(tokens) |
|
token_ids = self.tokenizer.convert_tokens_to_ids(tokens) |
|
|
|
|
|
self.text_encoder.resize_token_embeddings(len(self.tokenizer)) |
|
for token_id, embedding in zip(token_ids, embeddings): |
|
self.text_encoder.get_input_embeddings().weight.data[token_id] = embedding |
|
|
|
logger.info("Loaded textual inversion embedding for {token}.") |
|
|