|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import shutil |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import unittest |
|
from typing import List |
|
|
|
from accelerate.utils import write_basic_config |
|
|
|
from diffusers import DiffusionPipeline, UNet2DConditionModel |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
|
|
|
|
|
|
class SubprocessCallException(Exception): |
|
pass |
|
|
|
|
|
def run_command(command: List[str], return_stdout=False): |
|
""" |
|
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture |
|
if an error occurred while running `command` |
|
""" |
|
try: |
|
output = subprocess.check_output(command, stderr=subprocess.STDOUT) |
|
if return_stdout: |
|
if hasattr(output, "decode"): |
|
output = output.decode("utf-8") |
|
return output |
|
except subprocess.CalledProcessError as e: |
|
raise SubprocessCallException( |
|
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" |
|
) from e |
|
|
|
|
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class ExamplesTestsAccelerate(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
super().setUpClass() |
|
cls._tmpdir = tempfile.mkdtemp() |
|
cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") |
|
|
|
write_basic_config(save_location=cls.configPath) |
|
cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] |
|
|
|
@classmethod |
|
def tearDownClass(cls): |
|
super().tearDownClass() |
|
shutil.rmtree(cls._tmpdir) |
|
|
|
def test_train_unconditional(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/unconditional_image_generation/train_unconditional.py |
|
--dataset_name hf-internal-testing/dummy_image_class_data |
|
--model_config_name_or_path diffusers/ddpm_dummy |
|
--resolution 64 |
|
--output_dir {tmpdir} |
|
--train_batch_size 2 |
|
--num_epochs 1 |
|
--gradient_accumulation_steps 1 |
|
--ddpm_num_inference_steps 2 |
|
--learning_rate 1e-3 |
|
--lr_warmup_steps 5 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args, return_stdout=True) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|
|
def test_textual_inversion(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/textual_inversion/textual_inversion.py |
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe |
|
--train_data_dir docs/source/en/imgs |
|
--learnable_property object |
|
--placeholder_token <cat-toy> |
|
--initializer_token a |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.bin"))) |
|
|
|
def test_dreambooth(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/dreambooth/train_dreambooth.py |
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe |
|
--instance_data_dir docs/source/en/imgs |
|
--instance_prompt photo |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|
|
def test_dreambooth_checkpointing(self): |
|
instance_prompt = "photo" |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/dreambooth/train_dreambooth.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--instance_data_dir docs/source/en/imgs |
|
--instance_prompt {instance_prompt} |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 5 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(instance_prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") |
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) |
|
pipe(instance_prompt, num_inference_steps=2) |
|
|
|
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) |
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/dreambooth/train_dreambooth.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--instance_data_dir docs/source/en/imgs |
|
--instance_prompt {instance_prompt} |
|
--resolution 64 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 7 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(instance_prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) |
|
|
|
def test_text_to_image(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.bin"))) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) |
|
|
|
def test_text_to_image_checkpointing(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 5 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") |
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) |
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 7 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) |
|
|
|
def test_text_to_image_checkpointing_use_ema(self): |
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe" |
|
prompt = "a prompt" |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
|
|
|
|
|
|
|
|
initial_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 5 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--use_ema |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + initial_run_args) |
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet") |
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) |
|
|
|
|
|
|
|
resume_run_args = f""" |
|
examples/text_to_image/train_text_to_image.py |
|
--pretrained_model_name_or_path {pretrained_model_name_or_path} |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--center_crop |
|
--random_flip |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 7 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-4 |
|
--use_ema |
|
--seed=0 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None) |
|
pipe(prompt, num_inference_steps=2) |
|
|
|
|
|
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) |
|
|
|
|
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) |
|
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) |
|
|