|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import torch |
|
from parameterized import parameterized |
|
|
|
from diffusers import UNet2DConditionModel |
|
from diffusers.models.attention_processor import LoRAAttnProcessor |
|
from diffusers.utils import ( |
|
floats_tensor, |
|
load_hf_numpy, |
|
logging, |
|
require_torch_gpu, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
def create_lora_layers(model): |
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
lora_attn_procs[name].to_q_lora.up.weight += 1 |
|
lora_attn_procs[name].to_k_lora.up.weight += 1 |
|
lora_attn_procs[name].to_v_lora.up.weight += 1 |
|
lora_attn_procs[name].to_out_lora.up.weight += 1 |
|
|
|
return lora_attn_procs |
|
|
|
|
|
class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = UNet2DConditionModel |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
sizes = (32, 32) |
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (32, 64), |
|
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), |
|
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), |
|
"cross_attention_dim": 32, |
|
"attention_head_dim": 8, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 2, |
|
"sample_size": 32, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
def test_model_with_attention_head_dim_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_use_linear_projection(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["use_linear_projection"] = True |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_cross_attention_dim_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["cross_attention_dim"] = (32, 32) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_simple_projection(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape |
|
|
|
init_dict["class_embed_type"] = "simple_projection" |
|
init_dict["projection_class_embeddings_input_dim"] = sample_size |
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_class_embeddings_concat(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape |
|
|
|
init_dict["class_embed_type"] = "simple_projection" |
|
init_dict["projection_class_embeddings_input_dim"] = sample_size |
|
init_dict["class_embeddings_concat"] = True |
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_attention_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
model.set_attention_slice("auto") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice("max") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice(2) |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
def test_model_sliceable_head_dim(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
|
|
def check_sliceable_dim_attr(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
assert isinstance(module.sliceable_head_dim, int) |
|
|
|
for child in module.children(): |
|
check_sliceable_dim_attr(child) |
|
|
|
|
|
for module in model.children(): |
|
check_sliceable_dim_attr(module) |
|
|
|
def test_special_attn_proc(self): |
|
class AttnEasyProc(torch.nn.Module): |
|
def __init__(self, num): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.tensor(num)) |
|
self.is_run = False |
|
self.number = 0 |
|
self.counter = 0 |
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states += self.weight |
|
|
|
self.is_run = True |
|
self.counter += 1 |
|
self.number = number |
|
|
|
return hidden_states |
|
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
processor = AttnEasyProc(5.0) |
|
|
|
model.set_attn_processor(processor) |
|
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample |
|
|
|
assert processor.counter == 12 |
|
assert processor.is_run |
|
assert processor.number == 123 |
|
|
|
def test_lora_processors(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample1 = model(**inputs_dict).sample |
|
|
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
|
|
|
|
with torch.no_grad(): |
|
lora_attn_procs[name].to_q_lora.up.weight += 1 |
|
lora_attn_procs[name].to_k_lora.up.weight += 1 |
|
lora_attn_procs[name].to_v_lora.up.weight += 1 |
|
lora_attn_procs[name].to_out_lora.up.weight += 1 |
|
|
|
|
|
model.set_attn_processor(lora_attn_procs) |
|
model.to(torch_device) |
|
|
|
|
|
model.set_attn_processor(model.attn_processors) |
|
|
|
with torch.no_grad(): |
|
sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample |
|
sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
|
|
assert (sample1 - sample2).abs().max() < 1e-4 |
|
assert (sample3 - sample4).abs().max() < 1e-4 |
|
|
|
|
|
assert (sample2 - sample3).abs().max() > 1e-4 |
|
|
|
def test_lora_save_load(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
old_sample = model(**inputs_dict).sample |
|
|
|
lora_attn_procs = create_lora_layers(model) |
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
torch.manual_seed(0) |
|
new_model = self.model_class(**init_dict) |
|
new_model.to(torch_device) |
|
new_model.load_attn_procs(tmpdirname) |
|
|
|
with torch.no_grad(): |
|
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
|
|
assert (sample - new_sample).abs().max() < 1e-4 |
|
|
|
|
|
assert (sample - old_sample).abs().max() > 1e-4 |
|
|
|
def test_lora_save_load_safetensors(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
old_sample = model(**inputs_dict).sample |
|
|
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
lora_attn_procs[name].to_q_lora.up.weight += 1 |
|
lora_attn_procs[name].to_k_lora.up.weight += 1 |
|
lora_attn_procs[name].to_v_lora.up.weight += 1 |
|
lora_attn_procs[name].to_out_lora.up.weight += 1 |
|
|
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname, safe_serialization=True) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))) |
|
torch.manual_seed(0) |
|
new_model = self.model_class(**init_dict) |
|
new_model.to(torch_device) |
|
new_model.load_attn_procs(tmpdirname) |
|
|
|
with torch.no_grad(): |
|
new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample |
|
|
|
assert (sample - new_sample).abs().max() < 1e-4 |
|
|
|
|
|
assert (sample - old_sample).abs().max() > 1e-4 |
|
|
|
def test_lora_save_safetensors_load_torch(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) |
|
|
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
torch.manual_seed(0) |
|
new_model = self.model_class(**init_dict) |
|
new_model.to(torch_device) |
|
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.bin") |
|
|
|
def test_lora_save_torch_force_load_safetensors_error(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
lora_attn_procs = {} |
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) |
|
lora_attn_procs[name] = lora_attn_procs[name].to(model.device) |
|
|
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) |
|
torch.manual_seed(0) |
|
new_model = self.model_class(**init_dict) |
|
new_model.to(torch_device) |
|
with self.assertRaises(IOError) as e: |
|
new_model.load_attn_procs(tmpdirname, use_safetensors=True) |
|
self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception)) |
|
|
|
def test_lora_on_off(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
old_sample = model(**inputs_dict).sample |
|
|
|
lora_attn_procs = create_lora_layers(model) |
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample |
|
|
|
model.set_default_attn_processor() |
|
|
|
with torch.no_grad(): |
|
new_sample = model(**inputs_dict).sample |
|
|
|
assert (sample - new_sample).abs().max() < 1e-4 |
|
assert (sample - old_sample).abs().max() < 1e-4 |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_lora_xformers_on_off(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
lora_attn_procs = create_lora_layers(model) |
|
model.set_attn_processor(lora_attn_procs) |
|
|
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
on_sample = model(**inputs_dict).sample |
|
|
|
model.disable_xformers_memory_efficient_attention() |
|
off_sample = model(**inputs_dict).sample |
|
|
|
assert (sample - on_sample).abs().max() < 1e-4 |
|
assert (sample - off_sample).abs().max() < 1e-4 |
|
|
|
|
|
@slow |
|
class UNet2DConditionModelIntegrationTests(unittest.TestCase): |
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): |
|
revision = "fp16" if fp16 else None |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = UNet2DConditionModel.from_pretrained( |
|
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision |
|
) |
|
model.to(torch_device).eval() |
|
|
|
return model |
|
|
|
def test_set_attention_slice_auto(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice("auto") |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
def test_set_attention_slice_max(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice("max") |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
def test_set_attention_slice_int(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice(2) |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
def test_set_attention_slice_list(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
slice_list = 16 * [2, 3] |
|
unet = self.get_unet_model() |
|
unet.set_attention_slice(slice_list) |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return hidden_states |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], |
|
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], |
|
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], |
|
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") |
|
latents = self.get_latents(seed) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], |
|
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], |
|
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], |
|
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) |
|
latents = self.get_latents(seed, fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], |
|
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], |
|
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], |
|
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") |
|
latents = self.get_latents(seed) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], |
|
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], |
|
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], |
|
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) |
|
latents = self.get_latents(seed, fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], |
|
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], |
|
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], |
|
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") |
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64)) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == (4, 4, 64, 64) |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], |
|
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], |
|
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], |
|
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) |
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == (4, 4, 64, 64) |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], |
|
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], |
|
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], |
|
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) |
|
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|