|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import torch |
|
from parameterized import parameterized |
|
|
|
from diffusers import AutoencoderKL |
|
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderKL |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": [32, 64], |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
"latent_channels": 4, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_forward_signature(self): |
|
pass |
|
|
|
def test_training(self): |
|
pass |
|
|
|
@unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
def test_from_pretrained_hub(self): |
|
model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertEqual(len(loading_info["missing_keys"]), 0) |
|
|
|
model.to(torch_device) |
|
image = model(**self.dummy_input) |
|
|
|
assert image is not None, "Make sure output is not None" |
|
|
|
def test_output_pretrained(self): |
|
model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") |
|
model = model.to(torch_device) |
|
model.eval() |
|
|
|
if torch_device == "mps": |
|
generator = torch.manual_seed(0) |
|
else: |
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
|
|
image = torch.randn( |
|
1, |
|
model.config.in_channels, |
|
model.config.sample_size, |
|
model.config.sample_size, |
|
generator=torch.manual_seed(0), |
|
) |
|
image = image.to(torch_device) |
|
with torch.no_grad(): |
|
output = model(image, sample_posterior=True, generator=generator).sample |
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu() |
|
|
|
|
|
|
|
if torch_device == "mps": |
|
expected_output_slice = torch.tensor( |
|
[ |
|
-4.0078e-01, |
|
-3.8323e-04, |
|
-1.2681e-01, |
|
-1.1462e-01, |
|
2.0095e-01, |
|
1.0893e-01, |
|
-8.8247e-02, |
|
-3.0361e-01, |
|
-9.8644e-03, |
|
] |
|
) |
|
elif torch_device == "cpu": |
|
expected_output_slice = torch.tensor( |
|
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] |
|
) |
|
else: |
|
expected_output_slice = torch.tensor( |
|
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] |
|
) |
|
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) |
|
|
|
|
|
@slow |
|
class AutoencoderKLIntegrationTests(unittest.TestCase): |
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): |
|
revision = "fp16" if fp16 else None |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = AutoencoderKL.from_pretrained( |
|
model_id, |
|
subfolder="vae", |
|
torch_dtype=torch_dtype, |
|
revision=revision, |
|
) |
|
model.to(torch_device).eval() |
|
|
|
return model |
|
|
|
def get_generator(self, seed=0): |
|
if torch_device == "mps": |
|
return torch.manual_seed(seed) |
|
return torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], |
|
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], |
|
|
|
] |
|
) |
|
def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], |
|
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_stable_diffusion_fp16(self, seed, expected_slice): |
|
model = self.get_sd_vae_model(fp16=True) |
|
image = self.get_sd_image(seed, fp16=True) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image, generator=generator, sample_posterior=True).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], |
|
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
|
|
with torch.no_grad(): |
|
sample = model(image).sample |
|
|
|
assert sample.shape == image.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], |
|
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_stable_diffusion_decode(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], |
|
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], |
|
|
|
] |
|
) |
|
@require_torch_gpu |
|
def test_stable_diffusion_decode_fp16(self, seed, expected_slice): |
|
model = self.get_sd_vae_model(fp16=True) |
|
encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) |
|
|
|
with torch.no_grad(): |
|
sample = model.decode(encoding).sample |
|
|
|
assert list(sample.shape) == [3, 3, 512, 512] |
|
|
|
output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], |
|
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], |
|
|
|
] |
|
) |
|
def test_stable_diffusion_encode_sample(self, seed, expected_slice): |
|
model = self.get_sd_vae_model() |
|
image = self.get_sd_image(seed) |
|
generator = self.get_generator(seed) |
|
|
|
with torch.no_grad(): |
|
dist = model.encode(image).latent_dist |
|
sample = dist.sample(generator=generator) |
|
|
|
assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] |
|
|
|
output_slice = sample[0, -1, -3:, -3:].flatten().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
tolerance = 1e-3 if torch_device != "mps" else 1e-2 |
|
assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) |
|
|