|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from diffusers.utils import is_flax_available |
|
from diffusers.utils.testing_utils import require_flax, slow |
|
|
|
|
|
if is_flax_available(): |
|
import jax |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
from jax import pmap |
|
|
|
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline |
|
|
|
|
|
@require_flax |
|
class DownloadTests(unittest.TestCase): |
|
def test_download_only_pytorch(self): |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
|
|
_ = FlaxDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname |
|
) |
|
|
|
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname, os.listdir(tmpdirname)[0], "snapshots"))] |
|
files = [item for sublist in all_root_files for item in sublist] |
|
|
|
|
|
|
|
assert not any(f.endswith(".bin") for f in files) |
|
|
|
|
|
@slow |
|
@require_flax |
|
class FlaxPipelineTests(unittest.TestCase): |
|
def test_dummy_all_tpus(self): |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None |
|
) |
|
|
|
prompt = ( |
|
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" |
|
" field, close up, split lighting, cinematic" |
|
) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 4 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = pipeline.prepare_inputs(prompt) |
|
|
|
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images |
|
|
|
assert images.shape == (num_samples, 1, 64, 64, 3) |
|
if jax.device_count() == 8: |
|
assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 3.1111548) < 1e-3 |
|
assert np.abs(np.abs(images, dtype=np.float32).sum() - 199746.95) < 5e-1 |
|
|
|
images_pil = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) |
|
|
|
assert len(images_pil) == num_samples |
|
|
|
def test_stable_diffusion_v1_4(self): |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=None |
|
) |
|
|
|
prompt = ( |
|
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" |
|
" field, close up, split lighting, cinematic" |
|
) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 50 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = pipeline.prepare_inputs(prompt) |
|
|
|
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images |
|
|
|
assert images.shape == (num_samples, 1, 512, 512, 3) |
|
if jax.device_count() == 8: |
|
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.05652401)) < 1e-3 |
|
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2383808.2)) < 5e-1 |
|
|
|
def test_stable_diffusion_v1_4_bfloat_16(self): |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16, safety_checker=None |
|
) |
|
|
|
prompt = ( |
|
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" |
|
" field, close up, split lighting, cinematic" |
|
) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 50 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = pipeline.prepare_inputs(prompt) |
|
|
|
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images |
|
|
|
assert images.shape == (num_samples, 1, 512, 512, 3) |
|
if jax.device_count() == 8: |
|
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 |
|
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 |
|
|
|
def test_stable_diffusion_v1_4_bfloat_16_with_safety(self): |
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloat16 |
|
) |
|
|
|
prompt = ( |
|
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" |
|
" field, close up, split lighting, cinematic" |
|
) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 50 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = pipeline.prepare_inputs(prompt) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images |
|
|
|
assert images.shape == (num_samples, 1, 512, 512, 3) |
|
if jax.device_count() == 8: |
|
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.06652832)) < 1e-3 |
|
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2384849.8)) < 5e-1 |
|
|
|
def test_stable_diffusion_v1_4_bfloat_16_ddim(self): |
|
scheduler = FlaxDDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
|
|
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", |
|
revision="bf16", |
|
dtype=jnp.bfloat16, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
) |
|
scheduler_state = scheduler.create_state() |
|
|
|
params["scheduler"] = scheduler_state |
|
|
|
prompt = ( |
|
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" |
|
" field, close up, split lighting, cinematic" |
|
) |
|
|
|
prng_seed = jax.random.PRNGKey(0) |
|
num_inference_steps = 50 |
|
|
|
num_samples = jax.device_count() |
|
prompt = num_samples * [prompt] |
|
prompt_ids = pipeline.prepare_inputs(prompt) |
|
|
|
p_sample = pmap(pipeline.__call__, static_broadcasted_argnums=(3,)) |
|
|
|
|
|
params = replicate(params) |
|
prng_seed = jax.random.split(prng_seed, num_samples) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
images = p_sample(prompt_ids, params, prng_seed, num_inference_steps).images |
|
|
|
assert images.shape == (num_samples, 1, 512, 512, 3) |
|
if jax.device_count() == 8: |
|
assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.float32).sum() - 0.045043945)) < 1e-3 |
|
assert np.abs((np.abs(images, dtype=np.float32).sum() - 2347693.5)) < 5e-1 |
|
|