|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ( |
|
AudioDiffusionPipeline, |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DDPMScheduler, |
|
DiffusionPipeline, |
|
Mel, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
) |
|
from diffusers.utils import slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class PipelineFastTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def dummy_unet(self): |
|
torch.manual_seed(0) |
|
model = UNet2DModel( |
|
sample_size=(32, 64), |
|
in_channels=1, |
|
out_channels=1, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128), |
|
down_block_types=("AttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("UpBlock2D", "AttnUpBlock2D"), |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_unet_condition(self): |
|
torch.manual_seed(0) |
|
model = UNet2DConditionModel( |
|
sample_size=(64, 32), |
|
in_channels=1, |
|
out_channels=1, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128), |
|
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), |
|
cross_attention_dim=10, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_vqvae_and_unet(self): |
|
torch.manual_seed(0) |
|
vqvae = AutoencoderKL( |
|
sample_size=(128, 64), |
|
in_channels=1, |
|
out_channels=1, |
|
latent_channels=1, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128), |
|
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), |
|
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), |
|
) |
|
unet = UNet2DModel( |
|
sample_size=(64, 32), |
|
in_channels=1, |
|
out_channels=1, |
|
layers_per_block=2, |
|
block_out_channels=(128, 128), |
|
down_block_types=("AttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("UpBlock2D", "AttnUpBlock2D"), |
|
) |
|
return vqvae, unet |
|
|
|
@slow |
|
def test_audio_diffusion(self): |
|
device = "cpu" |
|
mel = Mel() |
|
|
|
scheduler = DDPMScheduler() |
|
pipe = AudioDiffusionPipeline(vqvae=None, unet=self.dummy_unet, mel=mel, scheduler=scheduler) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(42) |
|
output = pipe(generator=generator, steps=4) |
|
audio = output.audios[0] |
|
image = output.images[0] |
|
|
|
generator = torch.Generator(device=device).manual_seed(42) |
|
output = pipe(generator=generator, steps=4, return_dict=False) |
|
image_from_tuple = output[0][0] |
|
|
|
assert audio.shape == (1, (self.dummy_unet.sample_size[1] - 1) * mel.hop_length) |
|
assert image.height == self.dummy_unet.sample_size[0] and image.width == self.dummy_unet.sample_size[1] |
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10] |
|
image_from_tuple_slice = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8")[:10] |
|
expected_slice = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() == 0 |
|
|
|
scheduler = DDIMScheduler() |
|
dummy_vqvae_and_unet = self.dummy_vqvae_and_unet |
|
pipe = AudioDiffusionPipeline( |
|
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=mel, scheduler=scheduler |
|
) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
np.random.seed(0) |
|
raw_audio = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].sample_size[1] - 1) * mel.hop_length,)) |
|
generator = torch.Generator(device=device).manual_seed(42) |
|
output = pipe(raw_audio=raw_audio, generator=generator, start_step=5, steps=10) |
|
image = output.images[0] |
|
|
|
assert ( |
|
image.height == self.dummy_vqvae_and_unet[0].sample_size[0] |
|
and image.width == self.dummy_vqvae_and_unet[0].sample_size[1] |
|
) |
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10] |
|
expected_slice = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0 |
|
|
|
dummy_unet_condition = self.dummy_unet_condition |
|
pipe = AudioDiffusionPipeline( |
|
vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_unet_condition, mel=mel, scheduler=scheduler |
|
) |
|
|
|
np.random.seed(0) |
|
encoding = torch.rand((1, 1, 10)) |
|
output = pipe(generator=generator, encoding=encoding) |
|
image = output.images[0] |
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10] |
|
expected_slice = np.array([120, 139, 147, 123, 124, 96, 115, 121, 126, 144]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class PipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_audio_diffusion(self): |
|
device = torch_device |
|
|
|
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256") |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(42) |
|
output = pipe(generator=generator) |
|
audio = output.audios[0] |
|
image = output.images[0] |
|
|
|
assert audio.shape == (1, (pipe.unet.sample_size[1] - 1) * pipe.mel.hop_length) |
|
assert image.height == pipe.unet.sample_size[0] and image.width == pipe.unet.sample_size[1] |
|
image_slice = np.frombuffer(image.tobytes(), dtype="uint8")[:10] |
|
expected_slice = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() == 0 |
|
|