|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
DDIMScheduler, |
|
StableDiffusionControlNetPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel |
|
from diffusers.utils import load_image, load_numpy, randn_tensor, slow, torch_device |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ...test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
class StableDiffusionControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
) |
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
image = randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
"image": image, |
|
} |
|
|
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
|
|
class StableDiffusionMultiControlNetPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
torch.manual_seed(0) |
|
controlnet1 = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
) |
|
torch.manual_seed(0) |
|
controlnet2 = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
) |
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
controlnet = MultiControlNetModel([controlnet1, controlnet2]) |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
|
|
images = [ |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
] |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "numpy", |
|
"image": images, |
|
} |
|
|
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
try: |
|
|
|
pipe.save_pretrained(tmpdir) |
|
except NotImplementedError: |
|
pass |
|
|
|
|
|
@unittest.skip("save pretrained not implemented") |
|
def test_save_load_float16(self): |
|
... |
|
|
|
|
|
@unittest.skip("save pretrained not implemented") |
|
def test_save_load_local(self): |
|
... |
|
|
|
|
|
@unittest.skip("save pretrained not implemented") |
|
def test_save_load_optional_components(self): |
|
... |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionControlNetPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_depth(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Stormtrooper's lecture" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_hed(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "oil painting of handsome old man, masterpiece" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (704, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_mlsd(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "room" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (704, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_normal(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "cute toy" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_openpose(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Chef in the kitchen" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_scribble(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5) |
|
prompt = "bag" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (640, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_seg(self): |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(5) |
|
prompt = "house" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" |
|
) |
|
|
|
output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (512, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-3 |
|
|
|
def test_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
prompt = "house" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" |
|
) |
|
|
|
_ = pipe( |
|
prompt, |
|
image, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 4 * 10**9 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_pose_and_canny(self): |
|
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") |
|
controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny] |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird and Chef" |
|
image_canny = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
image_pose = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" |
|
) |
|
|
|
output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 512, 3) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy" |
|
) |
|
|
|
assert np.abs(expected_image - image).max() < 5e-2 |
|
|