File size: 9,689 Bytes
7385f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import sys
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from torch.nn import functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM

from model import *
from unitok.config import Args
from unitok.model import UniTok


PILtransform = transforms.ToPILImage()


def top_k_top_p_filtering(
    logits,
    top_k: int = 0,
    top_p: float = 1.0,
    filter_value: float = -float("Inf"),
    min_tokens_to_keep: int = 1,
):
    """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
        if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
            Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        Make sure we keep at least min_tokens_to_keep per batch example in the output
    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """

    if top_k > 0:
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k

        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        # scatter sorted tensors to original indexing
        indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
        logits[indices_to_remove] = filter_value
    # import pdb;pdb.set_trace()
    return logits


def sample(logits, temperature: float = 1.0, top_k: int = 0, top_p: float = 1.0, sample_logits=True):
    logits = logits[:, -1, :] / max(temperature, 1e-5)
    if top_k > 0 or top_p < 1.0:
        logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
    probs = F.softmax(logits, dim=-1)
    if sample_logits:
        idx = torch.multinomial(probs, num_samples=1)
    else:
        _, idx = torch.topk(probs, k=1, dim=-1)
    return idx, probs


def split_list(input_list, chunk_size):
    return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]


def get_args_parser():
    parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
    parser.add_argument('--unitok_path', type=str, required=True)
    parser.add_argument('--mllm_path', type=str, required=True)
    parser.add_argument('--prompt_file', type=str, required=True)
    parser.add_argument('--result_dir', type=str, required=True)
    parser.add_argument('--idx', type=int, default=0)
    parser.add_argument('--tau', type=float, default=0.9)
    parser.add_argument('--topk', type=int, default=2048)
    parser.add_argument('--topp', type=float, default=0.96)
    parser.add_argument('--cfg_scale', type=float, default=5.0)
    return parser


def main(args):
    text_set_id = args.idx
    tau = args.tau
    topk = args.topk
    topp = args.topp
    cfg_scale = args.cfg_scale

    print('loading vq model ...')
    ckpt = torch.load(args.unitok_path, map_location='cpu')
    vae_cfg = Args()
    vae_cfg.load_state_dict(ckpt['args'])
    vq_model = UniTok(vae_cfg)
    vq_model.load_state_dict(ckpt['trainer']['unitok'])
    vq_model.to('cuda')
    vq_model.eval()

    image_save_pth = '{}/GenAI-cfg_{}-topk_{}-topp_{}-tau_{}'.format(args.result_dir, str(cfg_scale), str(topk), str(topp), str(tau))

    tokenizer = AutoTokenizer.from_pretrained(args.mllm_path, padding_side='left')
    vqllm = AutoModelForCausalLM.from_pretrained(
        args.mllm_path,
        attn_implementation='flash_attention_2',
        torch_dtype=torch.bfloat16
    ).to('cuda')

    num_processes = 8
    chunk_size = 8  # batchsize
    num_codebooks = vae_cfg.num_codebooks

    with open(args.prompt_file, 'r') as f:
        lines = f.readlines()
    all_prompts = []
    for index, line in enumerate(lines):
        all_prompts.append({'Index': str(index + 1).zfill(5), 'Prompt': line.strip()})

    chunked_filenames = np.array_split(all_prompts, num_processes)
    subset = chunked_filenames[text_set_id].tolist()
    chunk_inputs = split_list(subset, chunk_size)
    for chunk in tqdm(chunk_inputs):
        text_inputs = [v['Prompt'] for v in chunk]
        uncondition_text_inputs = ['<unconditional>'] * len(text_inputs)
        for i in range(len(text_inputs)):
            text_inputs[i] = text_inputs[i] + ' Generate an image based on this description.'
        ori_batchsize = len(text_inputs)

        save_list = []
        if cfg_scale > 1:
            model_inputs = tokenizer(text_inputs + uncondition_text_inputs, return_tensors="pt", padding=True).to('cuda')
            total_batchsize = len(text_inputs + uncondition_text_inputs)
            model_inputs['input_ids'] = torch.cat([
                model_inputs['input_ids'],
                torch.empty(total_batchsize, 1).fill_(3).to(model_inputs['input_ids'])
            ], dim=1)
            model_inputs['attention_mask'] = torch.cat([
                model_inputs['attention_mask'],
                torch.empty(total_batchsize, 1).fill_(1).to(model_inputs['attention_mask'])
            ], dim=1)
        else:
            model_inputs = tokenizer(text_inputs, return_tensors="pt", padding=True).to('cuda')
            total_batchsize = len(text_inputs)
            model_inputs['input_ids'] = torch.cat([
                model_inputs['input_ids'],
                torch.empty(total_batchsize, 1).fill_(3).to(model_inputs['input_ids'])
            ], dim=1)
            model_inputs['attention_mask'] = torch.cat([
                model_inputs['attention_mask'],
                torch.empty(total_batchsize, 1).fill_(1).to(model_inputs['attention_mask'])
            ], dim=1)
        with torch.no_grad():
            sampling_kwargs = {'temperature': tau, 'top_k': topk, 'top_p': topp, 'sample_logits': True}
            pred_tokens = []
            input_multi_ids = None
            for _ in range(256):
                outputs = vqllm.T2I_forward_nocache(
                    **model_inputs,
                    input_multi_ids=input_multi_ids,
                    use_cache=None,
                    return_dict=True,
                    output_attentions=False,
                    output_hidden_states=False,
                )
                next_embed = outputs['last_hidden_state'][:, -1:, :]

                indices_arhead = []
                for i_head in range(num_codebooks):
                    ar_next_embed = vqllm.ar_head(
                        inputs_embeds=next_embed,
                        use_cache=False,
                        output_attentions=False,
                        output_hidden_states=False,
                        return_dict=False,
                    )
                    next_token_logits = vqllm.ar_head.linear_head(ar_next_embed)
                    if cfg_scale > 1:
                        cond_logits, uncond_logits = torch.split(next_token_logits, len(next_token_logits) // 2, dim=0)
                        cfg_logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
                        half_next_token, _ = sample(cfg_logits, **sampling_kwargs)
                        next_token = torch.cat([half_next_token, half_next_token])  # [bz,1]
                    else:
                        next_token, next_prob = sample(next_token_logits, **sampling_kwargs)

                    indices_arhead.append(next_token)
                    if i_head < num_codebooks - 1:
                        predicted_embed = vqllm.ar_head.codebooks[i_head](next_token)
                        next_embed = torch.cat([next_embed, predicted_embed], dim=1)

                # update generated ids, model inputs, and length for next step
                pred_tokens.append(torch.cat(indices_arhead, dim=1))  # [numcodebook,bz*2]
                input_multi_ids = torch.stack(pred_tokens, dim=-1)

            del sampling_kwargs, model_inputs, outputs

            image_vq_id = torch.stack(pred_tokens, dim=-1)[:ori_batchsize]
            save_list.append(image_vq_id)

        torch.cuda.empty_cache()

        print('decoding images ...')
        if not os.path.exists(image_save_pth):
            os.makedirs(image_save_pth)
        for datainfo, vq_code in zip(chunk, save_list[0]):
            idx = datainfo['Index']
            new_gen_ids = vq_code.unsqueeze(0).to('cuda')
            rec_image = vq_model.idx_to_img(new_gen_ids)
            rec_img = PILtransform(rec_image.squeeze(0).add(1).mul_(0.5).clamp_(0, 1))
            rec_img.save('{}/{}.jpg'.format(image_save_pth, str(idx)))


if __name__ == '__main__':
    parser = argparse.ArgumentParser('genai inference script', parents=[get_args_parser()])
    args = parser.parse_args()
    main(args)