Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,689 Bytes
7385f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import sys
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torchvision import transforms
from torch.nn import functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
from model import *
from unitok.config import Args
from unitok.model import UniTok
PILtransform = transforms.ToPILImage()
def top_k_top_p_filtering(
logits,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
# import pdb;pdb.set_trace()
return logits
def sample(logits, temperature: float = 1.0, top_k: int = 0, top_p: float = 1.0, sample_logits=True):
logits = logits[:, -1, :] / max(temperature, 1e-5)
if top_k > 0 or top_p < 1.0:
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
if sample_logits:
idx = torch.multinomial(probs, num_samples=1)
else:
_, idx = torch.topk(probs, k=1, dim=-1)
return idx, probs
def split_list(input_list, chunk_size):
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--unitok_path', type=str, required=True)
parser.add_argument('--mllm_path', type=str, required=True)
parser.add_argument('--prompt_file', type=str, required=True)
parser.add_argument('--result_dir', type=str, required=True)
parser.add_argument('--idx', type=int, default=0)
parser.add_argument('--tau', type=float, default=0.9)
parser.add_argument('--topk', type=int, default=2048)
parser.add_argument('--topp', type=float, default=0.96)
parser.add_argument('--cfg_scale', type=float, default=5.0)
return parser
def main(args):
text_set_id = args.idx
tau = args.tau
topk = args.topk
topp = args.topp
cfg_scale = args.cfg_scale
print('loading vq model ...')
ckpt = torch.load(args.unitok_path, map_location='cpu')
vae_cfg = Args()
vae_cfg.load_state_dict(ckpt['args'])
vq_model = UniTok(vae_cfg)
vq_model.load_state_dict(ckpt['trainer']['unitok'])
vq_model.to('cuda')
vq_model.eval()
image_save_pth = '{}/GenAI-cfg_{}-topk_{}-topp_{}-tau_{}'.format(args.result_dir, str(cfg_scale), str(topk), str(topp), str(tau))
tokenizer = AutoTokenizer.from_pretrained(args.mllm_path, padding_side='left')
vqllm = AutoModelForCausalLM.from_pretrained(
args.mllm_path,
attn_implementation='flash_attention_2',
torch_dtype=torch.bfloat16
).to('cuda')
num_processes = 8
chunk_size = 8 # batchsize
num_codebooks = vae_cfg.num_codebooks
with open(args.prompt_file, 'r') as f:
lines = f.readlines()
all_prompts = []
for index, line in enumerate(lines):
all_prompts.append({'Index': str(index + 1).zfill(5), 'Prompt': line.strip()})
chunked_filenames = np.array_split(all_prompts, num_processes)
subset = chunked_filenames[text_set_id].tolist()
chunk_inputs = split_list(subset, chunk_size)
for chunk in tqdm(chunk_inputs):
text_inputs = [v['Prompt'] for v in chunk]
uncondition_text_inputs = ['<unconditional>'] * len(text_inputs)
for i in range(len(text_inputs)):
text_inputs[i] = text_inputs[i] + ' Generate an image based on this description.'
ori_batchsize = len(text_inputs)
save_list = []
if cfg_scale > 1:
model_inputs = tokenizer(text_inputs + uncondition_text_inputs, return_tensors="pt", padding=True).to('cuda')
total_batchsize = len(text_inputs + uncondition_text_inputs)
model_inputs['input_ids'] = torch.cat([
model_inputs['input_ids'],
torch.empty(total_batchsize, 1).fill_(3).to(model_inputs['input_ids'])
], dim=1)
model_inputs['attention_mask'] = torch.cat([
model_inputs['attention_mask'],
torch.empty(total_batchsize, 1).fill_(1).to(model_inputs['attention_mask'])
], dim=1)
else:
model_inputs = tokenizer(text_inputs, return_tensors="pt", padding=True).to('cuda')
total_batchsize = len(text_inputs)
model_inputs['input_ids'] = torch.cat([
model_inputs['input_ids'],
torch.empty(total_batchsize, 1).fill_(3).to(model_inputs['input_ids'])
], dim=1)
model_inputs['attention_mask'] = torch.cat([
model_inputs['attention_mask'],
torch.empty(total_batchsize, 1).fill_(1).to(model_inputs['attention_mask'])
], dim=1)
with torch.no_grad():
sampling_kwargs = {'temperature': tau, 'top_k': topk, 'top_p': topp, 'sample_logits': True}
pred_tokens = []
input_multi_ids = None
for _ in range(256):
outputs = vqllm.T2I_forward_nocache(
**model_inputs,
input_multi_ids=input_multi_ids,
use_cache=None,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_embed = outputs['last_hidden_state'][:, -1:, :]
indices_arhead = []
for i_head in range(num_codebooks):
ar_next_embed = vqllm.ar_head(
inputs_embeds=next_embed,
use_cache=False,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
)
next_token_logits = vqllm.ar_head.linear_head(ar_next_embed)
if cfg_scale > 1:
cond_logits, uncond_logits = torch.split(next_token_logits, len(next_token_logits) // 2, dim=0)
cfg_logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
half_next_token, _ = sample(cfg_logits, **sampling_kwargs)
next_token = torch.cat([half_next_token, half_next_token]) # [bz,1]
else:
next_token, next_prob = sample(next_token_logits, **sampling_kwargs)
indices_arhead.append(next_token)
if i_head < num_codebooks - 1:
predicted_embed = vqllm.ar_head.codebooks[i_head](next_token)
next_embed = torch.cat([next_embed, predicted_embed], dim=1)
# update generated ids, model inputs, and length for next step
pred_tokens.append(torch.cat(indices_arhead, dim=1)) # [numcodebook,bz*2]
input_multi_ids = torch.stack(pred_tokens, dim=-1)
del sampling_kwargs, model_inputs, outputs
image_vq_id = torch.stack(pred_tokens, dim=-1)[:ori_batchsize]
save_list.append(image_vq_id)
torch.cuda.empty_cache()
print('decoding images ...')
if not os.path.exists(image_save_pth):
os.makedirs(image_save_pth)
for datainfo, vq_code in zip(chunk, save_list[0]):
idx = datainfo['Index']
new_gen_ids = vq_code.unsqueeze(0).to('cuda')
rec_image = vq_model.idx_to_img(new_gen_ids)
rec_img = PILtransform(rec_image.squeeze(0).add(1).mul_(0.5).clamp_(0, 1))
rec_img.save('{}/{}.jpg'.format(image_save_pth, str(idx)))
if __name__ == '__main__':
parser = argparse.ArgumentParser('genai inference script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)
|