File size: 20,175 Bytes
7385f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
# ------------------------------------------------------------------------
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
# Copyright 2024 Yanwei Li
# ------------------------------------------------------------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from typing import List, Optional, Tuple, Union

from transformers.utils import logging
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM

from model.arhead import AR_head
from model.liquid import MiniGeminiMetaModel, MiniGeminiMetaForCausalLM


logger = logging.get_logger(__name__)


class MiniGeminiConfig(LlamaConfig):
    model_type = "mini_gemini"


class MiniGeminiLlamaModel(MiniGeminiMetaModel, LlamaModel):
    config_class = MiniGeminiConfig

    def __init__(self, config: LlamaConfig):
        super(MiniGeminiLlamaModel, self).__init__(config)


class MiniGeminiLlamaForCausalLM(LlamaForCausalLM, MiniGeminiMetaForCausalLM):
    config_class = MiniGeminiConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = MiniGeminiLlamaModel(config)
        self.pretraining_tp = config.pretraining_tp
        self.vocab_size = config.vocab_size

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.ar_head = AR_head(self.config, codebook_size=32768, num_codebooks=8)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        data_types: torch.LongTensor = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        images_aux: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:


        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        additional_image_indexs = None
        if inputs_embeds is None and past_key_values is None:  # no in inference
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
                data_types,
                additional_image_labels,
                additional_image_indexs
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                images_aux,
                data_types
            )

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        if self.pretraining_tp > 1:
            lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.pretraining_tp, dim=0)
            logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.pretraining_tp)]
            logits = torch.cat(logits, dim=-1)
        else:
            logits = self.lm_head(hidden_states)
        logits = logits.float()

        text_loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            text_loss = loss_fct(shift_logits, shift_labels)
            num_text_tokens = (shift_labels != -100).sum().item()

        if additional_image_indexs is None:
            return CausalLMOutputWithPast(
                loss=text_loss,
                logits=logits,
                past_key_values=outputs.past_key_values,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )

        to_image_mask = data_types == 1  # where to get t2i loss in each batch  [True, False, False, True....]

        if len(additional_image_indexs) > 0 and len(to_image_mask) == len(hidden_states):  # image generation loss
            to_image_states = hidden_states[to_image_mask]

            # assert len(to_image_states) == len(additional_image_indexs)
            if len(to_image_states) != len(additional_image_indexs):
                print('to_image_mask', to_image_mask)
                print('additional_image_indexs', additional_image_indexs)
            shift_image_states = torch.stack([state[start_id - 1:end_id - 1] for (start_id, end_id), state in
                                              zip(additional_image_indexs, to_image_states)])  # Shift so that tokens < n predict n  [bz, seq_len, hidden_dim]
            base_tokens = shift_image_states

            K = self.ar_head.num_codebooks
            B, L, C = base_tokens.shape
            base_tokens = base_tokens.reshape(B * L, 1, C)

            targets = torch.cat(additional_image_labels, dim=0)  # [B, K, L]
            image_code_labels = targets
            targets = targets.permute(0, 2, 1).reshape(B * L, K)[:, :-1]
            index_embeddings = []
            for i in range(K - 1):
                index_embed = self.ar_head.codebooks[i](targets[:, i])
                index_embeddings.append(index_embed)
            index_embeddings = torch.stack(index_embeddings, dim=1)
            # import pdb;pdb.set_trace()
            h = torch.cat((base_tokens, index_embeddings), dim=1)  # [B*L, K, C]

            multicode_embedding = self.ar_head(
                input_ids=None,
                attention_mask=None,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=h,
                use_cache=False,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=False,
                cache_position=None,
            )
            image_logits = self.ar_head.linear_head(multicode_embedding)
            image_logits = image_logits.reshape(B, L, K, -1).permute(0, 2, 1, 3)  # [B, K, L, sub_vocab_size]
            loss_fct = CrossEntropyLoss()
            image_logits = image_logits.reshape(-1, self.ar_head.sub_vocab_size)
            image_labels = image_code_labels.view(-1)
            image_labels = image_labels.to(image_logits.device)
            image_softmax_normalizer = image_logits.max(-1).values ** 2
            image_z_loss = 0.00005 * image_softmax_normalizer.mean()
            image_loss = loss_fct(image_logits, image_labels) + image_z_loss
            num_image_tokens = image_labels.shape[0]
        else:
            if len(hidden_states) != len(to_image_mask):
                print('to_image_mask', to_image_mask)
                print('hidden_states', hidden_states.shape)
                print('inputs_embeds', inputs_embeds.shape)
                print('additional_image_indexs', additional_image_indexs)
            fake_ids = torch.ones(1, self.model.multi_embedder.num_codebooks - 1).to(inputs_embeds).long()
            index_embeddings = []
            for i in range(self.model.multi_embedder.num_codebooks - 1):
                index_embed = self.ar_head.codebooks[i](fake_ids[:, i])
                index_embeddings.append(index_embed)
            index_embeddings = torch.stack(index_embeddings, dim=1)

            multicode_embedding = self.ar_head(
                input_ids=None,
                attention_mask=None,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=index_embeddings,
                use_cache=False,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=False,
                cache_position=None,
            )
            image_logits = self.ar_head.linear_head(multicode_embedding)

            num_image_tokens = 0
            image_loss = (image_logits * 0).sum()  # + (base_tokens*0).sum()
            pass

        loss = image_loss * (num_image_tokens / (num_image_tokens + num_text_tokens)) + \
                text_loss * (num_text_tokens / (num_image_tokens + num_text_tokens))

        # t2i_ratio = to_image_mask.sum() / len(to_image_mask)
        # loss = image_loss * t2i_ratio + text_loss * (1 - t2i_ratio)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @torch.no_grad()
    def generate_mllm(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        images_aux: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")
        # import pdb;pdb.set_trace()
        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                images_aux
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)
        # import pdb;pdb.set_trace()
        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    @torch.no_grad()
    def generate(
            self,
            inputs: Optional[torch.Tensor] = None,
            images: Optional[torch.Tensor] = None,
            images_aux: Optional[torch.FloatTensor] = None,
            **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                images_aux
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def test_forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        input_multi_ids: torch.LongTensor = None,
        data_types: torch.LongTensor = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        images_aux: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        # import pdb;pdb.set_trace()
        if input_multi_ids is not None:
            input_multi_ids = input_multi_ids.unsqueeze(-1)  # [B,K,1]
            input_ids = None  # [B,1]
            inputs_embeds = self.model.multi_embedder(input_multi_ids)  # [B,1,C]

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return outputs

    def T2I_forward_nocache(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        input_multi_ids: torch.LongTensor = None,
        data_types: torch.LongTensor = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        images_aux: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        # import pdb;pdb.set_trace()
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_multi_ids is not None:
            inputs_text_embeds = self.get_model().embed_tokens(input_ids)
            input_ids = None  # [B,1]
            inputs_image_embeds = self.model.multi_embedder(input_multi_ids)  # [B,1,C]
            inputs_image_mask = torch.empty(inputs_image_embeds.shape[0], inputs_image_embeds.shape[1]).fill_(1).to(
                attention_mask)
            inputs_embeds = torch.cat([inputs_text_embeds, inputs_image_embeds], dim=1)
            attention_mask = torch.cat([attention_mask, inputs_image_mask], dim=1)
            position_ids = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0).repeat(
                inputs_embeds.shape[0], 1)
        else:
            inputs_embeds = self.get_model().embed_tokens(input_ids)
            input_ids = None

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return outputs

    def T2I_forward_withcache(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        input_multi_ids: torch.LongTensor = None,
        data_types: torch.LongTensor = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        images_aux: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        # import pdb;pdb.set_trace()
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_multi_ids is not None:
            inputs_image_embeds = self.model.multi_embedder(input_multi_ids[:, :, -1:])  # [B,1,C]
            inputs_embeds = inputs_image_embeds
            input_ids = None  # [B,1]
        else:
            inputs_embeds = self.get_model().embed_tokens(input_ids)
            input_ids = None

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        return outputs


    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        images_aux = kwargs.pop("images_aux", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        if images_aux is not None:
            _inputs['images_aux'] = images_aux
        return _inputs


AutoConfig.register("mini_gemini", MiniGeminiConfig)
AutoModelForCausalLM.register(MiniGeminiConfig, MiniGeminiLlamaForCausalLM)