File size: 6,411 Bytes
7385f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
from contextlib import nullcontext
from torch.nn.functional import scaled_dot_product_attention

from unitok.quant import VectorQuantizerM
from unitok.vitamin import ViTaminDecoder, GeGluMlp


class PlainAttention(nn.Module):
    def __init__(self, in_dim, out_dim, num_heads):
        super().__init__()
        if in_dim > out_dim:
            # assert in_dim // num_heads == out_dim
            self.head_dim = in_dim // num_heads
            self.qkv = nn.Linear(in_dim, in_dim * 3, bias=False)
            self.q_bias = nn.Parameter(torch.zeros(in_dim))
            self.v_bias = nn.Parameter(torch.zeros(in_dim))
            self.register_buffer('zero_k_bias', torch.zeros(in_dim))
        else:
            # assert out_dim // num_heads == in_dim
            self.head_dim = out_dim // num_heads
            self.qkv = nn.Linear(in_dim, out_dim * 3, bias=False)
            self.q_bias = nn.Parameter(torch.zeros(out_dim))
            self.v_bias = nn.Parameter(torch.zeros(out_dim))
            self.register_buffer('zero_k_bias', torch.zeros(out_dim))

        self.in_dim = in_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.scale = self.head_dim ** -0.5
        self.proj = nn.Linear(out_dim, out_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias)))
        q, k, v = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)

        x = scaled_dot_product_attention(q, k, v)

        if self.in_dim > self.out_dim:
            x = torch.mean(x, dim=1)
            if self.in_dim // self.num_heads != self.out_dim:
                x = nn.functional.adaptive_avg_pool1d(x, self.out_dim)
        else:
            x = x.transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        return x


class AttnProjection(nn.Module):
    def __init__(self, in_dim, out_dim, num_heads, norm_layer=nn.LayerNorm, mlp_ratio=2):
        super().__init__()
        assert out_dim % in_dim == 0 or in_dim % out_dim == 0
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.norm1 = norm_layer(in_dim)
        self.attn = PlainAttention(in_dim, out_dim, num_heads)
        self.proj = nn.Linear(in_dim, out_dim)
        self.norm3 = norm_layer(in_dim)

        self.norm2 = norm_layer(out_dim)
        hidden_dim = int(out_dim * mlp_ratio)
        self.mlp = GeGluMlp(
            in_features=out_dim,
            hidden_features=hidden_dim
        )

    def forward(self, x):
        x = self.proj(self.norm3(x)) + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


class VQVAE(nn.Module):
    def __init__(self, args):
        super().__init__()

        # 1. build encoder
        self.encoder = timm.create_model(
            args.model,
            patch_size=1,
            fc_norm=True,
            drop_rate=0.0,
            num_classes=0,
            global_pool='',
            pos_embed='none',
            class_token=False,
            mlp_layer=GeGluMlp,
            img_size=args.img_size,
            drop_path_rate=args.drop_path,
        )
        self.encoder.set_grad_checkpointing(args.grad_ckpt)

        # 2. build conv before quant
        if args.quant_proj == 'linear':
            self.quant_proj = nn.Linear(self.encoder.embed_dim, args.vocab_width)
        elif args.quant_proj == 'attn':
            self.quant_proj = AttnProjection(self.encoder.embed_dim, args.vocab_width, args.num_codebooks)
        else:
            raise NotImplementedError

        # 3. build quant
        self.quantize = VectorQuantizerM(
            vocab_size=args.vocab_size,
            vocab_width=args.vocab_width,
            beta=args.vq_beta,
            use_entropy_loss=args.le > 0,
            entropy_temp=args.e_temp,
            num_codebooks=args.num_codebooks,
        )

        # 4. build conv after quant
        if args.quant_proj == 'linear':
            self.post_quant_proj = nn.Linear(args.vocab_width, self.encoder.embed_dim)
        elif args.quant_proj == 'attn':
            self.post_quant_proj = AttnProjection(args.vocab_width, self.encoder.embed_dim, args.num_codebooks)
        else:
            raise NotImplementedError

        # 5. build decoder
        self.decoder = ViTaminDecoder(
            args.model,
            depths=(4, 2),
            img_size=args.img_size,
            drop_path=args.drop_path,
            grad_ckpt=args.grad_ckpt
        )

        self.maybe_record_function = nullcontext

    def forward(self, img):
        features = self.encoder(img).float()
        with torch.cuda.amp.autocast(enabled=False):
            features = self.quant_proj(features)
            quant_out = self.quantize(features)
            features, vq_loss, entropy_loss, usages = quant_out
            features = self.post_quant_proj(features)
        rec_img = self.decoder(features).float()
        return rec_img, vq_loss, entropy_loss, usages

    def img_to_idx(self, img):
        features = self.encoder(img).float()
        features = self.quant_proj(features)
        return self.quantize.f_to_idx(features)

    def idx_to_img(self, indices):
        features = self.quantize.idx_to_f(indices)
        features = self.post_quant_proj(features)
        img = self.decoder(features).clamp_(-1, 1)
        return img

    def img_to_reconstructed_img(self, img) -> torch.Tensor:
        features = self.encoder(img).float()
        with torch.cuda.amp.autocast(enabled=False):
            features = self.quant_proj(features)
            quant_out = self.quantize(features)
            features, _, _, _ = quant_out
            features = self.post_quant_proj(features)
        rec_img = self.decoder(features).float().clamp_(-1, 1)
        return rec_img


if __name__ == '__main__':
    for clz in (nn.Linear, nn.LayerNorm, nn.BatchNorm2d, nn.SyncBatchNorm, nn.Conv1d, nn.Conv2d, nn.ConvTranspose1d,
                nn.ConvTranspose2d):
        setattr(clz, 'reset_parameters', lambda self: None)

    cnn = VQVAE(channel_num=64, vocab_norm=False)
    from models import init_weights

    init_weights(cnn, -0.5)
    torch.save(cnn.state_dict(), r'C:\Users\16333\Desktop\PyCharm\vlip\local_output\cnn.pth')