Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,375 Bytes
7385f22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
from typing import List, Tuple
import torch
from torch import distributed as tdist, nn as nn
from torch.nn import functional as F
from torch.nn.functional import scaled_dot_product_attention
# from utils import dist
# this file only provides the VectorQuantizer2 used in VQVAE
__all__ = ['VectorQuantizer', ]
def get_entropy_loss(latent_embed, codebook_embed, inv_entropy_tau):
E_dist = latent_embed.square().sum(dim=1, keepdim=True) + codebook_embed.square().sum(dim=1, keepdim=False)
E_dist.addmm_(latent_embed, codebook_embed.T, alpha=-2, beta=1) # E_dist: (N, vocab_size)
logits = -E_dist.float().mul_(inv_entropy_tau)
# calc per_sample_entropy
prob, log_prob = logits.softmax(dim=-1), logits.log_softmax(dim=-1) # both are (N, vocab_size)
per_sample_entropy = torch.mean((-prob * log_prob).sum(dim=-1))
# calc codebook_entropy
avg_prob = prob.mean(dim=0) # (vocab_size,)
log_avg_prob = torch.log(avg_prob + 1e-7)
codebook_entropy = (-avg_prob * log_avg_prob).sum()
# calc entropy_loss
entropy_loss = per_sample_entropy - codebook_entropy
return entropy_loss
class NormalizedEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
# self.norm_scale = nn.Parameter(torch.tensor(0.0, dtype=torch.float32))
def forward(self, idx):
return F.embedding(
idx, F.normalize(self.weight, dim=1), self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse
)
def get_norm_weight(self):
return F.normalize(self.weight, dim=1)
class ResConv(nn.Conv2d):
def __init__(self, embed_dim, quant_resi):
ks = 3 if quant_resi < 0 else 1
super().__init__(in_channels=embed_dim, out_channels=embed_dim, kernel_size=ks, stride=1, padding=ks // 2)
self.resi_ratio = abs(quant_resi)
def forward(self, h_BChw):
return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(self.resi_ratio)
class VectorQuantizer(nn.Module):
def __init__(
self, vocab_size: int, vocab_width: int, vocab_norm: bool, beta: float = 0.25, quant_resi=-0.5,
using_entropy_loss=False, entropy_temp=0.01,
):
super().__init__()
self.vocab_size: int = vocab_size
self.vocab_width: int = vocab_width
self.register_buffer('vocab_usage', torch.zeros(self.vocab_size))
self.vocab_usage_record_times: int = 0
self.vocab_norm: bool = vocab_norm
# self.quant_resi = ResConv(self.vocab_width, quant_resi=quant_resi)
self.quant_resi = nn.Identity()
self.embedding = nn.Embedding(self.vocab_size, self.vocab_width)
self.beta: float = beta
self.using_entropy_loss, self.inv_entropy_tau = using_entropy_loss, 1 / entropy_temp
if not self.vocab_norm:
assert not self.using_entropy_loss, 'entropy loss without vocab norm is not supported'
def init_vocab(self, eini: float):
if eini > 0:
nn.init.trunc_normal_(self.embedding.weight.data, std=eini)
elif eini < 0:
base = self.vocab_width ** -0.5
base /= 36
self.embedding.weight.data.uniform_(-abs(eini) * base, abs(eini) * base)
def extra_repr(self) -> str:
return f'beta={self.beta:g}'
# ===================== `forward` is only used in VAE training =====================
def forward(self, f_BChw: torch.Tensor, ret_usages=False) -> Tuple[
torch.Tensor, torch.Tensor, torch.Tensor, List[float]]:
f_BChw = f_BChw.float()
B, C, h, w = f_BChw.shape
if self.vocab_norm:
if self.using_entropy_loss:
# find the nearest neighbor
NxC = f_BChw.permute(0, 2, 3, 1).reshape(-1, C)
NxC_no_grad = NxC.detach()
NxC_no_grad = F.normalize(NxC_no_grad, dim=-1)
idx_N = torch.argmax(NxC_no_grad @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
# get logits
E_dist = NxC.square().sum(dim=1, keepdim=True) + self.embedding.weight.square().sum(dim=1,
keepdim=False)
E_dist.addmm_(NxC, self.embedding.weight.T, alpha=-2, beta=1) # E_dist: (N, vocab_size)
logits = -E_dist.float().mul_(self.inv_entropy_tau)
# calc per_sample_entropy
prob, log_prob = logits.softmax(dim=-1), logits.log_softmax(dim=-1) # both are (N, vocab_size)
per_sample_entropy = torch.mean((-prob * log_prob).sum(dim=-1))
# calc codebook_entropy
avg_prob = prob.mean(dim=0) # (vocab_size,)
log_avg_prob = torch.log(avg_prob + 1e-7)
codebook_entropy = (-avg_prob * log_avg_prob).sum()
# calc entropy_loss
entropy_loss = per_sample_entropy - codebook_entropy
else:
NxC_no_grad = f_BChw.detach().permute(0, 2, 3, 1).reshape(-1, C)
NxC_no_grad = F.normalize(NxC_no_grad, dim=-1)
idx_N = torch.argmax(NxC_no_grad @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
entropy_loss = 0
else: # not self.vocab_norm
NxC_no_grad = f_BChw.detach().permute(0, 2, 3, 1).reshape(-1, C)
E_dist = NxC_no_grad.square().sum(dim=1, keepdim=True) + self.embedding.weight.data.square().sum(dim=1,
keepdim=False)
E_dist.addmm_(NxC_no_grad, self.embedding.weight.data.T, alpha=-2, beta=1) # E_dist: N x vocab_size
idx_N = torch.argmin(E_dist, dim=1)
entropy_loss = 0
prob_per_class_is_chosen = idx_N.bincount(minlength=self.vocab_size).float()
handler = tdist.all_reduce(prob_per_class_is_chosen, async_op=True) if (
self.training and dist.initialized()) else None
# look up
idx_Bhw = idx_N.view(B, h, w)
fhat_BChw = self.quant_resi(self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous())
# calc loss
vq_loss = F.mse_loss(fhat_BChw.detach(), f_BChw).mul_(self.beta) + F.mse_loss(fhat_BChw, f_BChw.detach())
fhat_BChw = (fhat_BChw.detach() - f_BChw.detach()).add_(f_BChw)
# update vocab_usage
if handler is not None:
handler.wait()
prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
vocab_usage = (prob_per_class_is_chosen > 0.01 / self.vocab_size).float().mean().mul_(100)
if self.vocab_usage_record_times == 0:
self.vocab_usage.copy_(prob_per_class_is_chosen)
elif self.vocab_usage_record_times < 100:
self.vocab_usage.mul_(0.9).add_(prob_per_class_is_chosen, alpha=0.1)
else:
self.vocab_usage.mul_(0.99).add_(prob_per_class_is_chosen, alpha=0.01)
self.vocab_usage_record_times += 1
return fhat_BChw, vq_loss, entropy_loss, (vocab_usage if ret_usages else None)
def f_to_idx(self, f_BChw: torch.Tensor) -> torch.LongTensor:
f_BChw = f_BChw.float()
B, C, h, w = f_BChw.shape
with torch.cuda.amp.autocast(enabled=False):
# find the nearest embedding
query_NxC = f_BChw.detach().permute(0, 2, 3, 1).reshape(-1, C)
if self.vocab_norm:
query_NxC = F.normalize(query_NxC, dim=-1)
idx_N = torch.argmax(query_NxC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
else:
E_dist = torch.sum(query_NxC.square(), dim=1, keepdim=True) + torch.sum(
self.embedding.weight.data.square(), dim=1, keepdim=False)
E_dist.addmm_(query_NxC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size)
idx_N = torch.argmin(E_dist, dim=1)
return idx_N.view(B, h, w)
class VectorQuantizerHybrid(nn.Module):
def __init__(
self, vocab_size: int, vocab_width: int, vocab_norm: bool, beta: float = 0.25, quant_resi=-0.5,
using_entropy_loss=False, entropy_temp=0.01,
):
super().__init__()
self.vocab_size: int = vocab_size
self.vocab_width: int = vocab_width
self.register_buffer('vocab_usage', torch.zeros(self.vocab_size))
self.vocab_usage_record_times: int = 0
self.vocab_norm: bool = vocab_norm
# self.quant_resi = ResConv(self.vocab_width, quant_resi=quant_resi)
self.embedding = nn.Embedding(self.vocab_size, self.vocab_width)
self.beta: float = beta
self.using_entropy_loss, self.inv_entropy_tau = using_entropy_loss, 1 / entropy_temp
if not self.vocab_norm:
assert not self.using_entropy_loss, 'entropy loss without vocab norm is not supported'
def init_vocab(self, eini: float):
if eini > 0:
nn.init.trunc_normal_(self.embedding.weight.data, std=eini)
elif eini < 0:
base = self.vocab_width ** -0.5
base /= 36
self.embedding.weight.data.uniform_(-abs(eini) * base, abs(eini) * base)
def extra_repr(self) -> str:
return f'beta={self.beta:g}'
def forward(self, class_tokens, patch_tokens, ret_usages=False):
class_tokens = class_tokens.float()
patch_tokens = patch_tokens.float()
B, L, C = class_tokens.shape
B, C, H, W = patch_tokens.shape
patch_tokens = patch_tokens.flatten(start_dim=2).permute(0, 2, 1)
NxC = torch.cat((class_tokens, patch_tokens), dim=1).reshape(-1, C)
if self.vocab_norm:
if self.using_entropy_loss:
# find the nearest neighbor
NxC_no_grad = NxC.detach()
NxC_no_grad = F.normalize(NxC_no_grad, dim=-1)
idx_N = torch.argmax(NxC_no_grad @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
# get logits
E_dist = NxC.square().sum(dim=1, keepdim=True) + self.embedding.weight.square().sum(dim=1,
keepdim=False)
E_dist.addmm_(NxC, self.embedding.weight.T, alpha=-2, beta=1) # E_dist: (N, vocab_size)
logits = -E_dist.float().mul_(self.inv_entropy_tau)
# calc per_sample_entropy
prob, log_prob = logits.softmax(dim=-1), logits.log_softmax(dim=-1) # both are (N, vocab_size)
per_sample_entropy = torch.mean((-prob * log_prob).sum(dim=-1))
# calc codebook_entropy
avg_prob = prob.mean(dim=0) # (vocab_size,)
log_avg_prob = torch.log(avg_prob + 1e-7)
codebook_entropy = (-avg_prob * log_avg_prob).sum()
# calc entropy_loss
entropy_loss = per_sample_entropy - codebook_entropy
else:
NxC_no_grad = NxC.detach()
NxC_no_grad = F.normalize(NxC_no_grad, dim=-1)
idx_N = torch.argmax(NxC_no_grad @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
entropy_loss = 0
else: # not self.vocab_norm
NxC_no_grad = NxC.detach()
E_dist = NxC_no_grad.square().sum(dim=1, keepdim=True) + self.embedding.weight.data.square().sum(dim=1,
keepdim=False)
E_dist.addmm_(NxC_no_grad, self.embedding.weight.data.T, alpha=-2, beta=1) # E_dist: N x vocab_size
idx_N = torch.argmin(E_dist, dim=1)
entropy_loss = 0
prob_per_class_is_chosen = idx_N.bincount(minlength=self.vocab_size).float()
handler = tdist.all_reduce(prob_per_class_is_chosen, async_op=True) if (
self.training and dist.initialized()) else None
# look up
fhat = self.embedding(idx_N)
# calc loss
vq_loss = F.mse_loss(fhat.detach(), NxC).mul_(self.beta) + F.mse_loss(fhat, NxC.detach())
fhat = (fhat.detach() - NxC.detach()).add_(NxC)
# update vocab_usage
if handler is not None:
handler.wait()
prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
vocab_usage = (prob_per_class_is_chosen > 0.01 / self.vocab_size).float().mean().mul_(100)
if self.vocab_usage_record_times == 0:
self.vocab_usage.copy_(prob_per_class_is_chosen)
elif self.vocab_usage_record_times < 100:
self.vocab_usage.mul_(0.9).add_(prob_per_class_is_chosen, alpha=0.1)
else:
self.vocab_usage.mul_(0.99).add_(prob_per_class_is_chosen, alpha=0.01)
self.vocab_usage_record_times += 1
fhat = fhat.view(B, -1, C)
fhat_class = fhat[:, :L, :]
fhat_patch = fhat[:, L:, :].view(B, H, W, C).permute(0, 3, 1, 2)
return fhat_class, fhat_patch, vq_loss, entropy_loss, (vocab_usage if ret_usages else None)
def f_to_idx(self, class_tokens, patch_tokens) -> torch.LongTensor:
B, L, C = class_tokens.shape
B, C, H, W = patch_tokens.shape
class_tokens = class_tokens.float()
patch_tokens = patch_tokens.float()
patch_tokens = patch_tokens.flatten(start_dim=2).permute(0, 2, 1)
NxC = torch.cat((class_tokens, patch_tokens), dim=1).reshape(-1, C)
with torch.cuda.amp.autocast(enabled=False):
# find the nearest embedding
if self.vocab_norm:
NxC = F.normalize(NxC, dim=-1)
idx_N = torch.argmax(NxC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1)
else:
E_dist = torch.sum(NxC.square(), dim=1, keepdim=True) + torch.sum(self.embedding.weight.data.square(),
dim=1, keepdim=False)
E_dist.addmm_(NxC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size)
idx_N = torch.argmin(E_dist, dim=1)
return idx_N
class VectorQuantizerX(nn.Module):
def __init__(
self,
vocab_size: int,
vocab_width: int,
beta: float = 0.25,
use_entropy_loss=False,
entropy_temp=0.01,
):
super().__init__()
self.beta = beta
self.vocab_size = vocab_size
self.vocab_width = vocab_width
self.vocab_usage_record_times: int = 0
self.register_buffer('vocab_usage', torch.zeros(self.vocab_size))
self.codebook = NormalizedEmbedding(self.vocab_size, self.vocab_width)
self.use_entropy_loss = use_entropy_loss
self.inv_entropy_tau = 1 / entropy_temp
def init_vocab(self, eini: float):
if eini > 0:
nn.init.trunc_normal_(self.codebook.weight.data, std=eini)
elif eini < 0:
base = self.vocab_width ** -0.5
base /= 36
self.codebook.weight.data.uniform_(-abs(eini) * base, abs(eini) * base)
def extra_repr(self) -> str:
return f'beta={self.beta:g}'
def forward(self, features):
B, L, C = features.shape
features = features.reshape(-1, C)
features = F.normalize(features, dim=-1).float()
codebook_embed = self.codebook.get_norm_weight()
indices = torch.argmax(features.detach() @ codebook_embed.T, dim=1)
entropy_loss = get_entropy_loss(features, codebook_embed, self.inv_entropy_tau) if self.use_entropy_loss else 0
features_hat = self.codebook(indices)
# calc loss
vq_loss = F.mse_loss(features_hat.detach(), features).mul_(self.beta) + F.mse_loss(features_hat,
features.detach())
features_hat = (features_hat.detach() - features.detach()).add_(features)
# update vocab_usage
prob_per_class_is_chosen = indices.bincount(minlength=self.vocab_size).float()
handler = tdist.all_reduce(prob_per_class_is_chosen, async_op=True) if (
self.training and dist.initialized()) else None
if handler is not None:
handler.wait()
prob_per_class_is_chosen /= prob_per_class_is_chosen.sum()
vocab_usage = (prob_per_class_is_chosen > 0.01 / self.vocab_size).float().mean().mul_(100)
if self.vocab_usage_record_times == 0:
self.vocab_usage.copy_(prob_per_class_is_chosen)
elif self.vocab_usage_record_times < 100:
self.vocab_usage.mul_(0.9).add_(prob_per_class_is_chosen, alpha=0.1)
else:
self.vocab_usage.mul_(0.99).add_(prob_per_class_is_chosen, alpha=0.01)
self.vocab_usage_record_times += 1
return features_hat.view(B, L, C), vq_loss, entropy_loss, vocab_usage
def f_to_idx(self, features):
B, L, C = features.shape
features = features.reshape(-1, C)
features = F.normalize(features, dim=-1).float()
codebook_embed = self.codebook.get_norm_weight().float()
indices = torch.argmax(features.detach() @ codebook_embed.T, dim=1)
return indices.view(B, L)
class VectorQuantizerM(nn.Module):
def __init__(
self,
vocab_size,
vocab_width,
beta=0.25,
use_entropy_loss=False,
entropy_temp=0.01,
num_codebooks=16
):
super().__init__()
self.num_codebooks = num_codebooks
self.codebooks = nn.ModuleList()
for _ in range(num_codebooks):
codebook = VectorQuantizerX(
vocab_size=vocab_size // num_codebooks,
vocab_width=vocab_width // num_codebooks,
beta=beta,
use_entropy_loss=use_entropy_loss,
entropy_temp=entropy_temp,
)
self.codebooks.append(codebook)
def init_vocab(self, eini: float):
for codebook in self.codebooks:
codebook.init_vocab(eini)
def f_to_idx(self, features):
indices = []
chunk_size = features.shape[-1] // self.num_codebooks
splited_features = features.split(chunk_size, dim=-1)
for i, codebook in enumerate(self.codebooks):
indices.append(codebook.f_to_idx(splited_features[i]))
indices = torch.stack(indices, dim=1)
return indices
def idx_to_f(self, indices):
assert indices.shape[1] == self.num_codebooks
latent_features = []
for i, codebook in enumerate(self.codebooks):
sub_indices = indices[:, i].flatten(start_dim=1)
latent_feature = codebook.codebook(sub_indices)
latent_features.append(latent_feature)
latent_features = torch.cat(latent_features, dim=-1)
return latent_features
def forward(self, features):
latent_features = []
global_vq_loss = 0.
global_entropy_loss = 0.
global_vocab_usage = 0.
chunk_size = features.shape[-1] // self.num_codebooks
splited_features = features.split(chunk_size, dim=-1)
for i, codebook in enumerate(self.codebooks):
latent_feature, vq_loss, entropy_loss, vocab_usage = codebook(splited_features[i])
latent_features.append(latent_feature)
global_vq_loss += vq_loss
global_entropy_loss += entropy_loss
global_vocab_usage += vocab_usage
latent_features = torch.cat(latent_features, dim=-1)
global_entropy_loss /= self.num_codebooks
global_vq_loss /= self.num_codebooks
global_vocab_usage /= self.num_codebooks
return latent_features, global_vq_loss, global_entropy_loss, global_vocab_usage
class CausalAttention(nn.Module):
def __init__(self, in_dim, out_dim, num_heads):
super().__init__()
if in_dim > out_dim:
# assert in_dim // num_heads == out_dim
self.head_dim = in_dim // num_heads
self.qkv = nn.Linear(in_dim, in_dim * 3, bias=False)
self.q_bias = nn.Parameter(torch.zeros(in_dim))
self.v_bias = nn.Parameter(torch.zeros(in_dim))
self.register_buffer('zero_k_bias', torch.zeros(in_dim))
else:
# assert out_dim // num_heads == in_dim
self.head_dim = out_dim // num_heads
self.qkv = nn.Linear(in_dim, out_dim * 3, bias=False)
self.q_bias = nn.Parameter(torch.zeros(out_dim))
self.v_bias = nn.Parameter(torch.zeros(out_dim))
self.register_buffer('zero_k_bias', torch.zeros(out_dim))
self.in_dim = in_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.scale = self.head_dim ** -0.5
self.proj = nn.Linear(out_dim, out_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
qkv = F.linear(input=x, weight=self.qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias)))
q, k, v = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4).unbind(0)
x = scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0., is_causal=True)
if self.in_dim > self.out_dim:
x = torch.mean(x, dim=1)
if self.in_dim // self.num_heads != self.out_dim:
x = nn.functional.adaptive_avg_pool1d(x, self.out_dim)
else:
x = x.transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
return x
class AttnProjection(nn.Module):
def __init__(self, in_dim, out_dim, num_heads, norm_layer=nn.LayerNorm, mlp_ratio=2):
super().__init__()
assert out_dim % in_dim == 0 or in_dim % out_dim == 0
self.in_dim = in_dim
self.out_dim = out_dim
self.norm1 = norm_layer(in_dim)
self.attn = CausalAttention(in_dim, out_dim, num_heads)
self.proj = nn.Linear(in_dim, out_dim)
self.norm3 = norm_layer(in_dim)
self.norm2 = norm_layer(out_dim)
hidden_dim = int(out_dim * mlp_ratio)
self.mlp = GeGluMlp(
in_features=out_dim,
hidden_features=hidden_dim
)
def forward(self, x):
x = self.proj(self.norm3(x)) + self.attn(self.norm1(x))
x = x + self.mlp(self.norm2(x))
return x
from functools import partial
from timm.models.layers import create_conv2d, get_norm_act_layer, get_norm_layer, make_divisible
class GeGluMlp(nn.Module):
def __init__(
self,
in_features,
hidden_features,
act_layer = None,
drop = 0.0,
):
super().__init__()
norm_layer = partial(get_norm_layer('layernorm'), eps=1e-6)
self.norm = norm_layer(in_features)
self.act = nn.GELU(approximate='tanh')
self.w0 = nn.Linear(in_features, hidden_features)
self.w1 = nn.Linear(in_features, hidden_features)
self.w2 = nn.Linear(hidden_features, in_features)
def forward(self, x):
x = self.norm(x)
x = self.act(self.w0(x)) * self.w1(x)
x = self.w2(x)
return x
|