File size: 1,335 Bytes
2cc345e 8def048 2cc345e 6ff350e 2cc345e 3a844d7 2cc345e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"FourthBrainGenAI/MarketMail-AI-Model"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(product_name, product_description):
batch = tokenizer(
f"### Product and Description:\n{product_name}: {product_description}\n\n### Ad:",
return_tensors="pt",
)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=2, label="Product Name"),
gr.inputs.Textbox(lines=5, label="Product Description"),
],
gr.outputs.Textbox(label="Ad"),
title="GenerAd-AI",
description="GenerAd-AI is a generative model that generates ads for products.",
).launch()
|