File size: 5,554 Bytes
31157e8 1258179 d5f098f 31157e8 0fe3545 31157e8 0fe3545 31157e8 d5f098f 0fe3545 d5f098f 0fe3545 31157e8 c0d911e 0fe3545 c0d911e 31157e8 c0d911e 0fe3545 c0d911e 31157e8 0fe3545 31157e8 d5f098f 0fe3545 d5f098f 0fe3545 d5f098f 31157e8 d5f098f 1258179 31157e8 0fe3545 31157e8 d5f098f 31157e8 c0d911e 0fe3545 31157e8 0fe3545 d5f098f 0fe3545 c0d911e 0fe3545 c0d911e 0fe3545 c0d911e 0fe3545 c0d911e 31157e8 c0d911e 31157e8 c0d911e 31157e8 0fe3545 c0d911e 0fe3545 c0d911e 0fe3545 1cb2d7e c0d911e 0fe3545 c0d911e 31157e8 c0d911e 0fe3545 31157e8 0fe3545 31157e8 0fe3545 31157e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
from datetime import datetime
import random
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import whoami
# Dataset corretto
EXAM_DATASET_ID = "huggingface-course/chapter_1_exam"
EXAM_MAX_QUESTIONS = 10
EXAM_PASSING_SCORE = 0.7
# Caricamento e mescolamento delle domande
ds = load_dataset(EXAM_DATASET_ID, split="train")
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)
quiz_data = quiz_data[:EXAM_MAX_QUESTIONS]
def on_user_logged_in(token):
if token is not None:
return [
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
gr.update(visible=False), "", [],
"Click 'Start' to begin the quiz", 0, [], "", token
]
else:
return [
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
gr.update(visible=False), "", [], "", 0, [], "", None
]
def push_results_to_hub(user_answers, token):
if token is None:
gr.Warning("Please log in to Hugging Face before pushing!")
return
correct_count = sum(1 for a in user_answers if a["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < EXAM_PASSING_SCORE:
gr.Warning(f"Score {grade:.1%} below passing threshold of {EXAM_PASSING_SCORE:.1%}")
return f"You scored {grade:.1%}. Please try again to achieve at least {EXAM_PASSING_SCORE:.1%}"
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
user_info = whoami(token=token.token)
repo_id = f"{EXAM_DATASET_ID}_student_responses"
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_ds = Dataset.from_list(user_answers)
new_ds = new_ds.map(lambda x: {
"username": user_info["name"],
"datetime": submission_time,
"grade": grade
})
new_ds.push_to_hub(repo_id)
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
if not is_start and question_idx < len(quiz_data):
current_q = quiz_data[question_idx]
correct_key = f"answer_{current_q['correct_answer']}".lower()
is_correct = selected_answer == current_q[correct_key]
user_answers.append({
"question": current_q["question"],
"selected_answer": selected_answer,
"correct_answer": current_q[correct_key],
"is_correct": is_correct,
"correct_reference": correct_key
})
question_idx += 1
if question_idx >= len(quiz_data):
correct_count = sum(1 for a in user_answers if a["is_correct"])
grade = correct_count / len(user_answers)
results_text = f"**Quiz Complete!**\n\nYour score: {grade:.1%}\nPassing score: {EXAM_PASSING_SCORE:.1%}\n"
return [
"", gr.update(choices=[], visible=False),
f"{'✅ Passed!' if grade >= EXAM_PASSING_SCORE else '❌ Did not pass'}",
question_idx, user_answers,
gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
results_text
]
q = quiz_data[question_idx]
return [
f"## Question {question_idx + 1}\n### {q['question']}",
gr.update(choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]], value=None, visible=True),
"Select an answer and click 'Next' to continue.",
question_idx, user_answers,
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), ""
]
def success_message(response):
return f"{response}\n\n**Success!**"
with gr.Blocks() as demo:
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
user_token = gr.State(value=None)
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
gr.Markdown("Log in first, then click 'Start' to begin. Answer each question, click 'Next', and finally click 'Submit'.")
question_text = gr.Markdown("")
radio_choices = gr.Radio(choices=[], label="Your Answer", scale=1.5, visible=False)
status_text = gr.Markdown("")
final_markdown = gr.Markdown("")
login_btn = gr.LoginButton(visible=True)
start_btn = gr.Button("Start ⏭️", visible=True)
next_btn = gr.Button("Next ⏭️", visible=False)
submit_btn = gr.Button("Submit ✅", visible=False)
login_btn.click(
fn=on_user_logged_in,
inputs=None,
outputs=[login_btn, start_btn, next_btn, submit_btn, question_text, radio_choices,
status_text, question_idx, user_answers, final_markdown, user_token]
)
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)],
outputs=[question_text, radio_choices, status_text, question_idx, user_answers,
start_btn, next_btn, submit_btn, final_markdown]
)
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
outputs=[question_text, radio_choices, status_text, question_idx, user_answers,
start_btn, next_btn, submit_btn, final_markdown]
)
submit_btn.click(
fn=push_results_to_hub,
inputs=[user_answers, user_token],
outputs=[final_markdown]
)
if __name__ == "__main__":
demo.launch()
|