File size: 1,454 Bytes
88c381a 91dd84e 240b689 19dc535 ec5e298 19dc535 88c381a 19dc535 88c381a e2f5e33 19dc535 793fb2e 19dc535 88c381a 793fb2e 225ca46 88c381a 793fb2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
import pandas as pd
from transformers import pipeline
# Load translation and summarization pipelines
translator = pipeline("translation_ru_to_en", model="Helsinki-NLP/opus-mt-ru-en")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to translate and summarize text
def translate_and_summarize(text):
translated_text = translator(text)[0]['translation_text']
summary = summarizer(translated_text, max_length=140, min_length=110, do_sample=False)[0]['summary_text']
return summary
# Streamlit interface
def main():
st.title("CSV Translator and Summarizer")
# File uploader
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
# Read data
data = pd.read_csv(uploaded_file)
# Check if 'Description' and 'Published' columns exist
if 'Description' in data.columns and 'Published' in data.columns:
# Apply translation and summarization based on 'Published' column
data['Summary'] = data.apply(
lambda row: translate_and_summarize(row['Description']) if pd.isna(row['Published']) else "", axis=1
)
# Display data in a table
st.write(data[['ID', 'Title', 'Summary']])
else:
st.error("Uploaded CSV does not contain required 'Description' and 'Published' columns.")
if __name__ == "__main__":
main()
|