Upload 2 files
Browse files- app-com_sentenca.py +62 -0
- best.pt +3 -0
app-com_sentenca.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
# Load the model once globally
|
6 |
+
MODEL_PATH = "best.pt"
|
7 |
+
model = YOLO(MODEL_PATH)
|
8 |
+
|
9 |
+
def detect_and_visualize(image):
|
10 |
+
# image is a NumPy array from Gradio
|
11 |
+
# Perform inference directly on this array
|
12 |
+
results = model(image)
|
13 |
+
|
14 |
+
# Ensure image is in the correct color space (most likely already RGB)
|
15 |
+
annotated_image = image.copy()
|
16 |
+
|
17 |
+
detections = []
|
18 |
+
for result in results:
|
19 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
20 |
+
confidences = result.boxes.conf.cpu().numpy()
|
21 |
+
class_ids = result.boxes.cls.cpu().numpy().astype(int)
|
22 |
+
|
23 |
+
for box, confidence, class_id in zip(boxes, confidences, class_ids):
|
24 |
+
x_min, y_min, x_max, y_max = map(int, box)
|
25 |
+
class_name = model.names[class_id]
|
26 |
+
|
27 |
+
# Pick a color or use a fixed color, no need for random if not desired
|
28 |
+
color = (0, 255, 0)
|
29 |
+
cv2.rectangle(annotated_image, (x_min, y_min), (x_max, y_max), color, 2)
|
30 |
+
label = f"{class_name} {confidence:.2f}"
|
31 |
+
cv2.putText(annotated_image, label, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
32 |
+
|
33 |
+
detections.append({
|
34 |
+
"label": class_name,
|
35 |
+
"confidence": float(confidence),
|
36 |
+
"bounding_box": {
|
37 |
+
"x1": x_min,
|
38 |
+
"y1": y_min,
|
39 |
+
"x2": x_max,
|
40 |
+
"y2": y_max
|
41 |
+
}
|
42 |
+
})
|
43 |
+
|
44 |
+
return annotated_image, detections
|
45 |
+
|
46 |
+
def gradio_interface(image):
|
47 |
+
annotated_image, detections = detect_and_visualize(image)
|
48 |
+
return annotated_image, detections
|
49 |
+
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=gradio_interface,
|
52 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
53 |
+
outputs=[
|
54 |
+
gr.Image(type="numpy", label="Annotated Image"),
|
55 |
+
gr.JSON(label="Detection Details")
|
56 |
+
],
|
57 |
+
title="YOLO Object Detection",
|
58 |
+
description="Upload an image to detect objects and view annotated results along with detailed detection data."
|
59 |
+
)
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
interface.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0020456ffaedfacdeafd3caf1d89b96a58844110c4caaa425f9e0a3152ef8b2
|
3 |
+
size 118666514
|